Cargando…

Indirect evidence for altered dopaminergic neurotransmission in very premature‐born adults

While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by eval...

Descripción completa

Detalles Bibliográficos
Autores principales: Schinz, David, Schmitz‐Koep, Benita, Zimmermann, Juliana, Brandes, Elin, Tahedl, Marlene, Menegaux, Aurore, Dukart, Juergen, Zimmer, Claus, Wolke, Dieter, Daamen, Marcel, Boecker, Henning, Bartmann, Peter, Sorg, Christian, Hedderich, Dennis M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502650/
https://www.ncbi.nlm.nih.gov/pubmed/37608591
http://dx.doi.org/10.1002/hbm.26451
Descripción
Sumario:While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co‐localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature‐born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full‐term born young adults, being assessed by resting‐state functional MRI (rs‐fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co‐localization of local (rs‐fMRI) activity alterations in premature‐born adults with respect to term‐born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co‐localization is related to perinatal measures and IQ. We found selectively altered co‐localization of rs‐fMRI activity in the premature‐born cohort with dopamine‐2/3‐receptor availability in premature‐born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co‐localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance.