Cargando…
Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells
The cathode interlayer plays a vital role in organic solar cells, which can modify the work function of electrodes, lower the electron extraction barriers, smooth the surface of the active layer, and remove solvent residuals. However, the development of organic cathode interlayer lags behind the rap...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502809/ https://www.ncbi.nlm.nih.gov/pubmed/37401166 http://dx.doi.org/10.1002/advs.202302460 |
_version_ | 1785106394037354496 |
---|---|
author | Zheng, Yangchao Zhao, Jingjing Liang, Huanpeng Zhao, Zhenmin Kan, Zhipeng |
author_facet | Zheng, Yangchao Zhao, Jingjing Liang, Huanpeng Zhao, Zhenmin Kan, Zhipeng |
author_sort | Zheng, Yangchao |
collection | PubMed |
description | The cathode interlayer plays a vital role in organic solar cells, which can modify the work function of electrodes, lower the electron extraction barriers, smooth the surface of the active layer, and remove solvent residuals. However, the development of organic cathode interlayer lags behind the rapidly improved organic solar cells because their intrinsic high surface tension can lead to poor contact with the active layers. Herein, a double‐dipole strategy is proposed to enhance the properties of organic cathode interlayers, which is induced by incorporating nitrogen‐ and bromine‐containing interlayer materials. To verify this approach, the state‐of‐the‐art active layer composed of PM6:Y6 and two prototypical cathode interlayer materials, PDIN and PFN‐Br is selected. Using the cathode interlayer PDIN: PFN‐Br (0.9:0.1, in wt.%) in the devices can reduce the electrode work function, suppress the dark current leakage, and improve charge extractions, leading to enhanced short circuit current density and fill factor. The bromine ions tend to break from PFN‐Br and form a new chemical bond with the silver electrode, which can adsorb extra dipoles directed from the interlayer to silver. These findings on the double‐dipole strategy provide insights into the hybrid cathode interlayers for efficient non‐fullerene organic solar cells. |
format | Online Article Text |
id | pubmed-10502809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105028092023-09-16 Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells Zheng, Yangchao Zhao, Jingjing Liang, Huanpeng Zhao, Zhenmin Kan, Zhipeng Adv Sci (Weinh) Research Articles The cathode interlayer plays a vital role in organic solar cells, which can modify the work function of electrodes, lower the electron extraction barriers, smooth the surface of the active layer, and remove solvent residuals. However, the development of organic cathode interlayer lags behind the rapidly improved organic solar cells because their intrinsic high surface tension can lead to poor contact with the active layers. Herein, a double‐dipole strategy is proposed to enhance the properties of organic cathode interlayers, which is induced by incorporating nitrogen‐ and bromine‐containing interlayer materials. To verify this approach, the state‐of‐the‐art active layer composed of PM6:Y6 and two prototypical cathode interlayer materials, PDIN and PFN‐Br is selected. Using the cathode interlayer PDIN: PFN‐Br (0.9:0.1, in wt.%) in the devices can reduce the electrode work function, suppress the dark current leakage, and improve charge extractions, leading to enhanced short circuit current density and fill factor. The bromine ions tend to break from PFN‐Br and form a new chemical bond with the silver electrode, which can adsorb extra dipoles directed from the interlayer to silver. These findings on the double‐dipole strategy provide insights into the hybrid cathode interlayers for efficient non‐fullerene organic solar cells. John Wiley and Sons Inc. 2023-07-03 /pmc/articles/PMC10502809/ /pubmed/37401166 http://dx.doi.org/10.1002/advs.202302460 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Zheng, Yangchao Zhao, Jingjing Liang, Huanpeng Zhao, Zhenmin Kan, Zhipeng Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells |
title | Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells |
title_full | Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells |
title_fullStr | Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells |
title_full_unstemmed | Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells |
title_short | Double‐Dipole Induced by Incorporating Nitrogen‐Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non‐Fullerene Organic Solar Cells |
title_sort | double‐dipole induced by incorporating nitrogen‐bromine hybrid cathode interlayers leads to suppressed current leakage and enhanced charge extraction in non‐fullerene organic solar cells |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502809/ https://www.ncbi.nlm.nih.gov/pubmed/37401166 http://dx.doi.org/10.1002/advs.202302460 |
work_keys_str_mv | AT zhengyangchao doubledipoleinducedbyincorporatingnitrogenbrominehybridcathodeinterlayersleadstosuppressedcurrentleakageandenhancedchargeextractioninnonfullereneorganicsolarcells AT zhaojingjing doubledipoleinducedbyincorporatingnitrogenbrominehybridcathodeinterlayersleadstosuppressedcurrentleakageandenhancedchargeextractioninnonfullereneorganicsolarcells AT lianghuanpeng doubledipoleinducedbyincorporatingnitrogenbrominehybridcathodeinterlayersleadstosuppressedcurrentleakageandenhancedchargeextractioninnonfullereneorganicsolarcells AT zhaozhenmin doubledipoleinducedbyincorporatingnitrogenbrominehybridcathodeinterlayersleadstosuppressedcurrentleakageandenhancedchargeextractioninnonfullereneorganicsolarcells AT kanzhipeng doubledipoleinducedbyincorporatingnitrogenbrominehybridcathodeinterlayersleadstosuppressedcurrentleakageandenhancedchargeextractioninnonfullereneorganicsolarcells |