Cargando…
Battery Charge Curve Prediction via Feature Extraction and Supervised Machine Learning
Real‐time onboard state monitoring and estimation of a battery over its lifetime is indispensable for the safe and durable operation of battery‐powered devices. In this study, a methodology to predict the entire constant‐current cycling curve with limited input information that can be collected in a...
Autores principales: | Su, Laisuo, Zhang, Shuyan, McGaughey, Alan J. H., Reeja‐Jayan, B., Manthiram, Arumugam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502833/ https://www.ncbi.nlm.nih.gov/pubmed/37394730 http://dx.doi.org/10.1002/advs.202301737 |
Ejemplares similares
-
Designing reliable electrochemical cells for operando lithium-ion battery study
por: Su, Laisuo, et al.
Publicado: (2021) -
Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries
por: He, Jiarui, et al.
Publicado: (2023) -
Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD)
por: Smith, Phil M., et al.
Publicado: (2018) -
Microwave-assisted Low-temperature Growth of Thin Films in Solution
por: Reeja-Jayan, B., et al.
Publicado: (2012) -
An Outlook on Lithium Ion Battery Technology
por: Manthiram, Arumugam
Publicado: (2017)