Cargando…
A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit
PURPOSE: This study aimed to construct a mortality model for the risk stratification of intensive care unit (ICU) patients with sepsis by applying a machine learning algorithm. METHODS: Adult patients who were diagnosed with sepsis during admission to ICU were extracted from MIMIC-III, MIMIC-IV, eIC...
Autores principales: | Zhuang, Jinhu, Huang, Haofan, Jiang, Song, Liang, Jianwen, Liu, Yong, Yu, Xiaxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503007/ https://www.ncbi.nlm.nih.gov/pubmed/37715194 http://dx.doi.org/10.1186/s12911-023-02279-0 |
Ejemplares similares
-
Development and validation of a risk stratification model for predicting the mortality of acute kidney injury in critical care patients
por: Huang, Haofan, et al.
Publicado: (2021) -
Transferability and interpretability of the sepsis prediction models in the intensive care unit
por: Chen, Qiyu, et al.
Publicado: (2022) -
Generalizable, Reproducible, and Neuroscientifically Interpretable Imaging Biomarkers for Alzheimer's Disease
por: Jin, Dan, et al.
Publicado: (2020) -
Generalizable items and modular structure for computerised physician staffing calculation on intensive care units
por: Weiss, Manfred, et al.
Publicado: (2017) -
Identification of robust and generalizable biomarkers for microbiome-based stratification in lifestyle interventions
por: Chen, Jiarui, et al.
Publicado: (2023)