Cargando…
Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg
BACKGROUND AND PURPOSE: To develop and validate a deep learning-based automatic segmentation model for assessing intracranial volume (ICV) and to compare the accuracy determined by NeuroQuant (NQ), FreeSurfer (FS), and SynthSeg. MATERIALS AND METHODS: This retrospective study included 60 subjects [3...
Autores principales: | Suh, Pae Sun, Jung, Wooseok, Suh, Chong Hyun, Kim, Jinyoung, Oh, Jio, Heo, Hwon, Shim, Woo Hyun, Lim, Jae-Sung, Lee, Jae-Hong, Kim, Ho Sung, Kim, Sang Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503131/ https://www.ncbi.nlm.nih.gov/pubmed/37719763 http://dx.doi.org/10.3389/fneur.2023.1221892 |
Ejemplares similares
-
SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining
por: Billot, Benjamin, et al.
Publicado: (2023) -
Comparison of Automated Brain Volume Measures by NeuroQuant vs. Freesurfer in Patients with Mild Cognitive Impairment: Effect of Slice Thickness
por: Yim, Younghee, et al.
Publicado: (2021) -
FreeSurfer subcortical normative data
por: Potvin, Olivier, et al.
Publicado: (2016) -
Updated Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant(®) and NeuroGage(®) in Patients With Traumatic Brain Injury
por: Ross, David E., et al.
Publicado: (2022) -
Quantitative Analysis of PiB-PET with FreeSurfer ROIs
por: Su, Yi, et al.
Publicado: (2013)