Cargando…
Forward variable selection for random forest models
Random forest is a popular prediction approach for handling high dimensional covariates. However, it often becomes infeasible to interpret the obtained high dimensional and non-parametric model. Aiming for an interpretable predictive model, we develop a forward variable selection method using the co...
Autores principales: | Velthoen, Jasper, Cai, Juan-Juan, Jongbloed, Geurt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503461/ https://www.ncbi.nlm.nih.gov/pubmed/37720244 http://dx.doi.org/10.1080/02664763.2022.2095362 |
Ejemplares similares
-
Evaluation of variable selection methods for random forests and omics data sets
por: Degenhardt, Frauke, et al.
Publicado: (2017) -
Isotonic regression for metallic microstructure data: estimation and testing under order restrictions
por: Vittorietti, Martina, et al.
Publicado: (2021) -
Conditional variable importance for random forests
por: Strobl, Carolin, et al.
Publicado: (2008) -
A Data-Driven Approach for Studying the Influence of Carbides on Work Hardening of Steel
por: Vittorietti, Martina, et al.
Publicado: (2022) -
Mathematical Methods for Signal and Image Analysis and Representation
por: Florack, Luc, et al.
Publicado: (2012)