Cargando…
Predicting the Stone-Free Status of Percutaneous Nephrolithotomy with the Machine Learning System
PURPOSE: The study aimed to create a machine learning model (MLM) to predict the stone-free status (SFS) of patients undergoing percutaneous nephrolithotomy (PCNL) and compare its performance to the S.T.O.N.E. and Guy’s stone scores. PATIENTS AND METHODS: This is a retrospective study that included...
Autores principales: | AlAzab, Rami, Ghammaz, Owais, Ardah, Nabil, Al-Bzour, Ayah, Zeidat, Layan, Mawali, Zahraa, Ahmed, Yaman B, Alguzo, Tha’er Abdulkareem, Al-Alwani, Azhar Mohanad, Samara, Mahmoud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503523/ https://www.ncbi.nlm.nih.gov/pubmed/37720492 http://dx.doi.org/10.2147/IJNRD.S427404 |
Ejemplares similares
-
Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment
por: Al-Bzour, Noor N., et al.
Publicado: (2023) -
Artificial Intelligence and Machine Learning Applications in Sudden Cardiac Arrest Prediction and Management: A Comprehensive Review
por: Aqel, Sarah, et al.
Publicado: (2023) -
Genomic and Transcriptomic Predictors of Response to Immune Checkpoint Inhibitors in Melanoma Patients: A Machine Learning Approach
por: Ahmed, Yaman B., et al.
Publicado: (2022) -
Metastatic Perivascular Epithelioid Cell Tumor Of The Kidney: A Case Report With Emphasis On Response To The Tyrosine-Kinase Inhibitor Sunitinib
por: AlAzab, Rami S, et al.
Publicado: (2019) -
Stress urinary incontinence among Jordanian women living in rural areas: Prevalence, associated factors and self-management behaviours
por: AlAzab, Rami, et al.
Publicado: (2021)