Cargando…
Detecting trends and shocks in terrorist activities
Although there are some techniques for dealing with sparse and concentrated discrete data, standard time-series analyses appear ill-suited to understanding the temporal patterns of terrorist attacks due to the sparsity of the events. This article addresses these issues by proposing a novel technique...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503774/ https://www.ncbi.nlm.nih.gov/pubmed/37713372 http://dx.doi.org/10.1371/journal.pone.0291514 |
_version_ | 1785106593494335488 |
---|---|
author | Prieto-Curiel, Rafael Walther, Olivier Davies, Ewan |
author_facet | Prieto-Curiel, Rafael Walther, Olivier Davies, Ewan |
author_sort | Prieto-Curiel, Rafael |
collection | PubMed |
description | Although there are some techniques for dealing with sparse and concentrated discrete data, standard time-series analyses appear ill-suited to understanding the temporal patterns of terrorist attacks due to the sparsity of the events. This article addresses these issues by proposing a novel technique for analysing low-frequency temporal events, such as terrorism, based on their cumulative curve and corresponding gradients. Using an iterative algorithm based on a piecewise linear function, our technique detects trends and shocks observed in the events associated with terrorist groups that would not necessarily be visible using other methods. The analysis leverages disaggregated data on political violence from the Armed Conflict Location & Event Data Project (ACLED) to analyse the intensity of the two most violent terrorist organisations in Africa: Boko Haram (including its splinter group, the Islamic State West Africa Province), and Al-Shabaab. Our method detects moments when terrorist groups change their capabilities to conduct daily attacks and, by taking into account the directionality of attacks, highlights major changes in the government’s strategies. Results suggest that security policies have largely failed to reduce both groups’ forces and restore stability. |
format | Online Article Text |
id | pubmed-10503774 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105037742023-09-16 Detecting trends and shocks in terrorist activities Prieto-Curiel, Rafael Walther, Olivier Davies, Ewan PLoS One Research Article Although there are some techniques for dealing with sparse and concentrated discrete data, standard time-series analyses appear ill-suited to understanding the temporal patterns of terrorist attacks due to the sparsity of the events. This article addresses these issues by proposing a novel technique for analysing low-frequency temporal events, such as terrorism, based on their cumulative curve and corresponding gradients. Using an iterative algorithm based on a piecewise linear function, our technique detects trends and shocks observed in the events associated with terrorist groups that would not necessarily be visible using other methods. The analysis leverages disaggregated data on political violence from the Armed Conflict Location & Event Data Project (ACLED) to analyse the intensity of the two most violent terrorist organisations in Africa: Boko Haram (including its splinter group, the Islamic State West Africa Province), and Al-Shabaab. Our method detects moments when terrorist groups change their capabilities to conduct daily attacks and, by taking into account the directionality of attacks, highlights major changes in the government’s strategies. Results suggest that security policies have largely failed to reduce both groups’ forces and restore stability. Public Library of Science 2023-09-15 /pmc/articles/PMC10503774/ /pubmed/37713372 http://dx.doi.org/10.1371/journal.pone.0291514 Text en © 2023 Prieto-Curiel et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Prieto-Curiel, Rafael Walther, Olivier Davies, Ewan Detecting trends and shocks in terrorist activities |
title | Detecting trends and shocks in terrorist activities |
title_full | Detecting trends and shocks in terrorist activities |
title_fullStr | Detecting trends and shocks in terrorist activities |
title_full_unstemmed | Detecting trends and shocks in terrorist activities |
title_short | Detecting trends and shocks in terrorist activities |
title_sort | detecting trends and shocks in terrorist activities |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503774/ https://www.ncbi.nlm.nih.gov/pubmed/37713372 http://dx.doi.org/10.1371/journal.pone.0291514 |
work_keys_str_mv | AT prietocurielrafael detectingtrendsandshocksinterroristactivities AT waltherolivier detectingtrendsandshocksinterroristactivities AT daviesewan detectingtrendsandshocksinterroristactivities |