Cargando…
Global effects of aging on the hemodynamic response function in the human brain
In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a transient, stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503846/ https://www.ncbi.nlm.nih.gov/pubmed/37720046 http://dx.doi.org/10.21203/rs.3.rs-3299293/v1 |
Sumario: | In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a transient, stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity. Contrary to this assumption, however, evidence has accrued that normal aging may also significantly affect the vasculature, thereby affecting cerebral hemodynamics and metabolism, confounding interpretation of fMRI aging studies. In this study, use was made of a multisensory stimulus to evoke the HRF in ~ 87% of cerebral cortex in cognitively intact adults with ages ranging from 22–75 years. The stimulus evokes both positive and negative HRFs, which were characterized using model-free parameters in native-space coordinates. Results showed significant age trends in HRF parameter distributions in terms of both amplitudes (e.g., peak amplitude and CNR) and temporal dynamics (e.g., full-width-at-half-maximum). This work sets the stage for using HRF methods as a biomarker for age-related pathology. |
---|