Cargando…
Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device
Organs that face external environments, such as skin and gut, are lined by epithelia, which have two functions – to provide a semi-permeable barrier and to sense stimuli. The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and si...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503863/ https://www.ncbi.nlm.nih.gov/pubmed/37720014 http://dx.doi.org/10.21203/rs.3.rs-2972828/v1 |
_version_ | 1785106612057276416 |
---|---|
author | De Hoyos, Manolo Yu, Xi Gonzalez-Suarez, Alan Mercado-Perez, Arnaldo Krueger, Eugene Hernandez, Jeric Druliner, Brooke Linden, David R. Beyder, Arthur Chen, Sisi Fedyshyn, Yaroslav Revzin, Alexander |
author_facet | De Hoyos, Manolo Yu, Xi Gonzalez-Suarez, Alan Mercado-Perez, Arnaldo Krueger, Eugene Hernandez, Jeric Druliner, Brooke Linden, David R. Beyder, Arthur Chen, Sisi Fedyshyn, Yaroslav Revzin, Alexander |
author_sort | De Hoyos, Manolo |
collection | PubMed |
description | Organs that face external environments, such as skin and gut, are lined by epithelia, which have two functions – to provide a semi-permeable barrier and to sense stimuli. The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and signal to enteric neurons which coordinate a range of physiologic processes required for normal digestive tract function. Yet, the neuro-epithelial connections between intestinal epithelial cells and enteric neurons remain poorly resolved, which leaves us with limited mechanistic understanding of their function. We describe the development of a two-compartment microfluidic device for modeling neuro-epithelial interactions, and apply it to form the gut’s neuro-epithelial connections. The device contains epithelial and neuronal compartments connected by microgrooves. The epithelial compartment was designed for cell seeding via injection and confinement of intestinal epithelial cells derived from human intestinal organoids. We demonstrated that organoids planarized effectively and retained epithelial phenotype for over a week. In the second chamber we dissociated and cultured intestinal myenteric neurons including intrinsic primary afferent neurons (IPANs) from transgenic mice that expressed the fluorescent protein tdTomato. IPANs extended projections into microgrooves, surrounded and frequently made contacts with epithelial cells. The density and directionality of neuronal projections were enhanced by the presence of epithelial cells in the adjacent compartment. Our microfluidic device represents a platform for dissecting structure and function of neuro-epithelial connections in the gut and other organs (skin, lung, bladder, and others) in health and disease. |
format | Online Article Text |
id | pubmed-10503863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Journal Experts |
record_format | MEDLINE/PubMed |
spelling | pubmed-105038632023-09-16 Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device De Hoyos, Manolo Yu, Xi Gonzalez-Suarez, Alan Mercado-Perez, Arnaldo Krueger, Eugene Hernandez, Jeric Druliner, Brooke Linden, David R. Beyder, Arthur Chen, Sisi Fedyshyn, Yaroslav Revzin, Alexander Res Sq Article Organs that face external environments, such as skin and gut, are lined by epithelia, which have two functions – to provide a semi-permeable barrier and to sense stimuli. The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and signal to enteric neurons which coordinate a range of physiologic processes required for normal digestive tract function. Yet, the neuro-epithelial connections between intestinal epithelial cells and enteric neurons remain poorly resolved, which leaves us with limited mechanistic understanding of their function. We describe the development of a two-compartment microfluidic device for modeling neuro-epithelial interactions, and apply it to form the gut’s neuro-epithelial connections. The device contains epithelial and neuronal compartments connected by microgrooves. The epithelial compartment was designed for cell seeding via injection and confinement of intestinal epithelial cells derived from human intestinal organoids. We demonstrated that organoids planarized effectively and retained epithelial phenotype for over a week. In the second chamber we dissociated and cultured intestinal myenteric neurons including intrinsic primary afferent neurons (IPANs) from transgenic mice that expressed the fluorescent protein tdTomato. IPANs extended projections into microgrooves, surrounded and frequently made contacts with epithelial cells. The density and directionality of neuronal projections were enhanced by the presence of epithelial cells in the adjacent compartment. Our microfluidic device represents a platform for dissecting structure and function of neuro-epithelial connections in the gut and other organs (skin, lung, bladder, and others) in health and disease. American Journal Experts 2023-09-07 /pmc/articles/PMC10503863/ /pubmed/37720014 http://dx.doi.org/10.21203/rs.3.rs-2972828/v1 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. https://creativecommons.org/licenses/by/4.0/License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Article De Hoyos, Manolo Yu, Xi Gonzalez-Suarez, Alan Mercado-Perez, Arnaldo Krueger, Eugene Hernandez, Jeric Druliner, Brooke Linden, David R. Beyder, Arthur Chen, Sisi Fedyshyn, Yaroslav Revzin, Alexander Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device |
title | Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device |
title_full | Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device |
title_fullStr | Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device |
title_full_unstemmed | Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device |
title_short | Modeling Gut Neuro-Epithelial Connections in a Novel Micro uidic Device |
title_sort | modeling gut neuro-epithelial connections in a novel micro uidic device |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503863/ https://www.ncbi.nlm.nih.gov/pubmed/37720014 http://dx.doi.org/10.21203/rs.3.rs-2972828/v1 |
work_keys_str_mv | AT dehoyosmanolo modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT yuxi modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT gonzalezsuarezalan modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT mercadoperezarnaldo modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT kruegereugene modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT hernandezjeric modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT drulinerbrooke modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT lindendavidr modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT beyderarthur modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT chensisi modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT fedyshynyaroslav modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice AT revzinalexander modelinggutneuroepithelialconnectionsinanovelmicrouidicdevice |