Cargando…
Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model
It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture model...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503963/ https://www.ncbi.nlm.nih.gov/pubmed/37713666 http://dx.doi.org/10.1371/journal.pcbi.1011374 |
_version_ | 1785106622210637824 |
---|---|
author | Vera-Siguenza, Elias Escribano-Gonzalez, Cristina Serrano-Gonzalo, Irene Eskla, Kattri-Liis Spill, Fabian Tennant, Daniel |
author_facet | Vera-Siguenza, Elias Escribano-Gonzalez, Cristina Serrano-Gonzalo, Irene Eskla, Kattri-Liis Spill, Fabian Tennant, Daniel |
author_sort | Vera-Siguenza, Elias |
collection | PubMed |
description | It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with (13)C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells. |
format | Online Article Text |
id | pubmed-10503963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105039632023-09-16 Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model Vera-Siguenza, Elias Escribano-Gonzalez, Cristina Serrano-Gonzalo, Irene Eskla, Kattri-Liis Spill, Fabian Tennant, Daniel PLoS Comput Biol Research Article It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with (13)C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells. Public Library of Science 2023-09-15 /pmc/articles/PMC10503963/ /pubmed/37713666 http://dx.doi.org/10.1371/journal.pcbi.1011374 Text en © 2023 Vera-Siguenza et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Vera-Siguenza, Elias Escribano-Gonzalez, Cristina Serrano-Gonzalo, Irene Eskla, Kattri-Liis Spill, Fabian Tennant, Daniel Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
title | Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
title_full | Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
title_fullStr | Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
title_full_unstemmed | Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
title_short | Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
title_sort | mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10503963/ https://www.ncbi.nlm.nih.gov/pubmed/37713666 http://dx.doi.org/10.1371/journal.pcbi.1011374 |
work_keys_str_mv | AT verasiguenzaelias mathematicalreconstructionofthemetabolicnetworkinaninvitromultiplemyelomamodel AT escribanogonzalezcristina mathematicalreconstructionofthemetabolicnetworkinaninvitromultiplemyelomamodel AT serranogonzaloirene mathematicalreconstructionofthemetabolicnetworkinaninvitromultiplemyelomamodel AT esklakattriliis mathematicalreconstructionofthemetabolicnetworkinaninvitromultiplemyelomamodel AT spillfabian mathematicalreconstructionofthemetabolicnetworkinaninvitromultiplemyelomamodel AT tennantdaniel mathematicalreconstructionofthemetabolicnetworkinaninvitromultiplemyelomamodel |