Cargando…

Experimental validation of computer-vision methods for the successful detection of endodontic treatment obturation and progression from noisy radiographs

PURPOSE: (1) To evaluate the effects of denoising and data balancing on deep learning to detect endodontic treatment outcomes from radiographs. (2) To develop and train a deep-learning model and classifier to predict obturation quality from radiomics. METHODS: The study conformed to the STARD 2015 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasan, Habib Al, Saad, Farhan Hasin, Ahmed, Saif, Mohammed, Nabeel, Farook, Taseef Hasan, Dudley, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504118/
https://www.ncbi.nlm.nih.gov/pubmed/37097541
http://dx.doi.org/10.1007/s11282-023-00685-8
Descripción
Sumario:PURPOSE: (1) To evaluate the effects of denoising and data balancing on deep learning to detect endodontic treatment outcomes from radiographs. (2) To develop and train a deep-learning model and classifier to predict obturation quality from radiomics. METHODS: The study conformed to the STARD 2015 and MI-CLAIMS 2021 guidelines. 250 deidentified dental radiographs were collected and augmented to produce 2226 images. The dataset was classified according to endodontic treatment outcomes following a set of customized criteria. The dataset was denoised and balanced, and processed with YOLOv5s, YOLOv5x, and YOLOv7 models of real-time deep-learning computer vision. Diagnostic test parameters such as sensitivity (Sn), specificity (Sp), accuracy (Ac), precision, recall, mean average precision (mAP), and confidence were evaluated. RESULTS: Overall accuracy for all the deep-learning models was above 85%. Imbalanced datasets with noise removal led to YOLOv5x’s prediction accuracy to drop to 72%, while balancing and noise removal led to all three models performing at over 95% accuracy. mAP saw an improvement from 52 to 92% following balancing and denoising. CONCLUSION: The current study of computer vision applied to radiomic datasets successfully classified endodontic treatment obturation and mishaps according to a custom progressive classification system and serves as a foundation to larger research on the subject matter.