Cargando…
Experimental validation of computer-vision methods for the successful detection of endodontic treatment obturation and progression from noisy radiographs
PURPOSE: (1) To evaluate the effects of denoising and data balancing on deep learning to detect endodontic treatment outcomes from radiographs. (2) To develop and train a deep-learning model and classifier to predict obturation quality from radiomics. METHODS: The study conformed to the STARD 2015 a...
Autores principales: | Hasan, Habib Al, Saad, Farhan Hasin, Ahmed, Saif, Mohammed, Nabeel, Farook, Taseef Hasan, Dudley, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504118/ https://www.ncbi.nlm.nih.gov/pubmed/37097541 http://dx.doi.org/10.1007/s11282-023-00685-8 |
Ejemplares similares
-
Neuroendocrine Influencers and Associated Factors That Shape Jaw Movement and Growth in Temporomandibular Joint Disorder Management: A Systematic Review of Clinical and Radiographic Evidence
por: Farook, Taseef Hasan, et al.
Publicado: (2023) -
A 3D printed electronic wearable device to generate vertical, horizontal and phono-articulatory jaw movement parameters: A concept implementation
por: Farook, Taseef Hasan, et al.
Publicado: (2023) -
Digital Shade Matching in Dentistry: A Systematic Review
por: Rashid, Farah, et al.
Publicado: (2023) -
Influence of Intraoral Scanners, Operators, and Data Processing on Dimensional Accuracy of Dental Casts for Unsupervised Clinical Machine Learning: An In Vitro Comparative Study
por: Farook, Taseef Hasan, et al.
Publicado: (2023) -
Visual Diagnostics of Dental Caries through Deep Learning of Non-Standardised Photographs Using a Hybrid YOLO Ensemble and Transfer Learning Model
por: Tareq, Abu, et al.
Publicado: (2023)