Cargando…

A feasibility study of 5G positioning with current cellular network deployment

This research examines the feasibility of using synchronization signals broadcasted by currently deployed fifth generation (5G) cellular networks to determine the position of a static receiver. The main focus lies on the analysis of synchronization among the base stations of a real 5G network in Mil...

Descripción completa

Detalles Bibliográficos
Autores principales: Camajori Tedeschini, Bernardo, Brambilla, Mattia, Italiano, Lorenzo, Reggiani, Simone, Vaccarono, Davide, Alghisi, Marianna, Benvenuto, Lorenzo, Goia, Alessandro, Realini, Eugenio, Grec, Florin, Nicoli, Monica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504288/
https://www.ncbi.nlm.nih.gov/pubmed/37714945
http://dx.doi.org/10.1038/s41598-023-42426-1
Descripción
Sumario:This research examines the feasibility of using synchronization signals broadcasted by currently deployed fifth generation (5G) cellular networks to determine the position of a static receiver. The main focus lies on the analysis of synchronization among the base stations of a real 5G network in Milan, Italy, as this has a major impact on the accuracy of localization based on time of arrival measurements. Understanding such properties, indeed, is fundamental to characterize the clock drifts and implement compensation strategies as well as to identify the direct communication beam. The paper shows how the clock errors, i.e., inaccurate synchronization, among 5G base stations exhibit a significant bias, which is detrimental for precise cellular positioning. By compensating the synchronization errors of devices’ clocks, we demonstrate that it is in principle possible to localize a static user with an accuracy of approximately 8–10 m in non-obstructed visibility conditions, for urban and rural scenarios, using the deployed 5G network operating at 3.68 GHz and relying on broadcast signals as defined by 5G Release 15 standard. This work has been funded by the European Space Agency (ESA) Navigation Innovation and Support Program (NAVISP) Element 2 pillar which aims at improving the competitiveness of the industry of the participating States in the global Positioning, Navigation and Timing (PNT) market.