Cargando…
Continual learning approaches for single cell RNA sequencing data
Single-cell RNA sequencing data is among the most interesting and impactful data of today and the sizes of the available datasets are increasing drastically. There is a substantial need for learning from large datasets, causing nontrivial challenges, especially in hardware. Loading even a single dat...
Autores principales: | Saygili, Gorkem, OzgodeYigin, Busra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504339/ https://www.ncbi.nlm.nih.gov/pubmed/37714869 http://dx.doi.org/10.1038/s41598-023-42482-7 |
Ejemplares similares
-
Effect of distance measures on confidences of t-SNE embeddings and its implications on clustering for scRNA-seq data
por: Ozgode Yigin, Busra, et al.
Publicado: (2023) -
An Overview of Deep Learning Algorithms and Their Applications in Neuropsychiatry
por: Guney, Gokhan, et al.
Publicado: (2021) -
SPECK: an unsupervised learning approach for cell surface receptor abundance estimation for single-cell RNA-sequencing data
por: Javaid, Azka, et al.
Publicado: (2023) -
A Regularized Multi-Task Learning Approach for Cell Type Detection in Single-Cell RNA Sequencing Data
por: Upadhyay, Piu, et al.
Publicado: (2022) -
An active learning approach for clustering single-cell RNA-seq data
por: Lin, Xiang, et al.
Publicado: (2022)