Cargando…
Molecular docking analysis of calcium channel blockers with ALR2 and RAGE
A metabolic condition called diabetes mellitus is linked to a number of substantial challenges. Advanced Glycation End Products (AGEs) and Aldose reductase (ALR2) are crucial in the slow development of several secondary complications. Selected calcium channel blockers (CCB's-1, 4-dihydropyridin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504517/ https://www.ncbi.nlm.nih.gov/pubmed/37720280 http://dx.doi.org/10.6026/97320630019028 |
Sumario: | A metabolic condition called diabetes mellitus is linked to a number of substantial challenges. Advanced Glycation End Products (AGEs) and Aldose reductase (ALR2) are crucial in the slow development of several secondary complications. Selected calcium channel blockers (CCB's-1, 4-dihydropyridines) were docked against ALR2 (PDB code: 1Z3N) and RAGE (PDB code: 3CJJ) in the current study. We report that 1, 4-dihydropyridine compounds, particularly Benidipine, bind to the active sites with good efficiency. Thus, 1,4 dihydropyridine derivatives can be considered for further confirmation in drug discovery. |
---|