Cargando…
Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox
Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still gene...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504672/ https://www.ncbi.nlm.nih.gov/pubmed/37719152 http://dx.doi.org/10.1016/j.xgen.2023.100389 |
_version_ | 1785106776885035008 |
---|---|
author | Middelkamp, Sjors Manders, Freek Peci, Flavia van Roosmalen, Markus J. González, Diego Montiel Bertrums, Eline J.M. van der Werf, Inge Derks, Lucca L.M. Groenen, Niels M. Verheul, Mark Trabut, Laurianne Pleguezuelos-Manzano, Cayetano Brandsma, Arianne M. Antoniou, Evangelia Reinhardt, Dirk Bierings, Marc Belderbos, Mirjam E. van Boxtel, Ruben |
author_facet | Middelkamp, Sjors Manders, Freek Peci, Flavia van Roosmalen, Markus J. González, Diego Montiel Bertrums, Eline J.M. van der Werf, Inge Derks, Lucca L.M. Groenen, Niels M. Verheul, Mark Trabut, Laurianne Pleguezuelos-Manzano, Cayetano Brandsma, Arianne M. Antoniou, Evangelia Reinhardt, Dirk Bierings, Marc Belderbos, Mirjam E. van Boxtel, Ruben |
author_sort | Middelkamp, Sjors |
collection | PubMed |
description | Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy. |
format | Online Article Text |
id | pubmed-10504672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105046722023-09-17 Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox Middelkamp, Sjors Manders, Freek Peci, Flavia van Roosmalen, Markus J. González, Diego Montiel Bertrums, Eline J.M. van der Werf, Inge Derks, Lucca L.M. Groenen, Niels M. Verheul, Mark Trabut, Laurianne Pleguezuelos-Manzano, Cayetano Brandsma, Arianne M. Antoniou, Evangelia Reinhardt, Dirk Bierings, Marc Belderbos, Mirjam E. van Boxtel, Ruben Cell Genom Article Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy. Elsevier 2023-08-23 /pmc/articles/PMC10504672/ /pubmed/37719152 http://dx.doi.org/10.1016/j.xgen.2023.100389 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Middelkamp, Sjors Manders, Freek Peci, Flavia van Roosmalen, Markus J. González, Diego Montiel Bertrums, Eline J.M. van der Werf, Inge Derks, Lucca L.M. Groenen, Niels M. Verheul, Mark Trabut, Laurianne Pleguezuelos-Manzano, Cayetano Brandsma, Arianne M. Antoniou, Evangelia Reinhardt, Dirk Bierings, Marc Belderbos, Mirjam E. van Boxtel, Ruben Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox |
title | Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox |
title_full | Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox |
title_fullStr | Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox |
title_full_unstemmed | Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox |
title_short | Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox |
title_sort | comprehensive single-cell genome analysis at nucleotide resolution using the pta analysis toolbox |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504672/ https://www.ncbi.nlm.nih.gov/pubmed/37719152 http://dx.doi.org/10.1016/j.xgen.2023.100389 |
work_keys_str_mv | AT middelkampsjors comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT mandersfreek comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT peciflavia comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT vanroosmalenmarkusj comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT gonzalezdiegomontiel comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT bertrumselinejm comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT vanderwerfinge comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT derksluccalm comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT groenennielsm comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT verheulmark comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT trabutlaurianne comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT pleguezuelosmanzanocayetano comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT brandsmaariannem comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT antoniouevangelia comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT reinhardtdirk comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT bieringsmarc comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT belderbosmirjame comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox AT vanboxtelruben comprehensivesinglecellgenomeanalysisatnucleotideresolutionusingtheptaanalysistoolbox |