Cargando…
Machine learning and EEG can classify passive viewing of discrete categories of visual stimuli but not the observation of pain
Previous studies have demonstrated the potential of machine learning (ML) in classifying physical pain from non-pain states using electroencephalographic (EEG) data. However, the application of ML to EEG data to categorise the observation of pain versus non-pain images of human facial expressions or...
Autores principales: | Mari, Tyler, Henderson, Jessica, Ali, S. Hasan, Hewitt, Danielle, Brown, Christopher, Stancak, Andrej, Fallon, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10504739/ https://www.ncbi.nlm.nih.gov/pubmed/37715119 http://dx.doi.org/10.1186/s12868-023-00819-y |
Ejemplares similares
-
External validation of binary machine learning models for pain intensity perception classification from EEG in healthy individuals
por: Mari, Tyler, et al.
Publicado: (2023) -
The neural correlates of texture perception: A systematic review and activation likelihood estimation meta‐analysis of functional magnetic resonance imaging studies
por: Henderson, Jessica, et al.
Publicado: (2023) -
Neural correlates of perceptual texture change during active touch
por: Henderson, Jessica, et al.
Publicado: (2023) -
Pain Catastrophising Affects Cortical Responses to Viewing Pain in Others
por: Fallon, Nicholas, et al.
Publicado: (2015) -
Intensity-dependent modulation of cortical somatosensory processing during external, low-frequency peripheral nerve stimulation in humans
por: Hewitt, Danielle, et al.
Publicado: (2022)