Cargando…
Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation
Despite recent advances in the accuracy of brain tumor segmentation, the results still suffer from low reliability and robustness. Uncertainty estimation is an efficient solution to this problem, as it provides a measure of confidence in the segmentation results. The current uncertainty estimation m...
Autores principales: | Li, Hao, Nan, Yang, Del Ser, Javier, Yang, Guang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505106/ https://www.ncbi.nlm.nih.gov/pubmed/37724130 http://dx.doi.org/10.1007/s00521-022-08016-4 |
Ejemplares similares
-
Explaining COVID-19 diagnosis with Taylor decompositions
por: Hassan, Mohammad Mehedi, et al.
Publicado: (2022) -
FEBDNN: fusion embedding-based deep neural network for user retweeting behavior prediction on social networks
por: Wang, Lidong, et al.
Publicado: (2022) -
Differentially private multivariate time series forecasting of aggregated human mobility with deep learning: Input or gradient perturbation?
por: Arcolezi, Héber Hwang, et al.
Publicado: (2022) -
A deep LSTM network for the Spanish electricity consumption forecasting
por: Torres, J. F., et al.
Publicado: (2022) -
Applying attention-based BiLSTM and technical indicators in the design and performance analysis of stock trading strategies
por: Lee, Ming-Che, et al.
Publicado: (2022)