Cargando…
Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction
RNAs are fundamental in living cells and perform critical functions determined by their tertiary architectures. However, accurate modeling of 3D RNA structure remains a challenging problem. We present a novel method, DRfold, to predict RNA tertiary structures by simultaneous learning of local frame...
Autores principales: | Li, Yang, Zhang, Chengxin, Feng, Chenjie, Pearce, Robin, Lydia Freddolino, P., Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505173/ https://www.ncbi.nlm.nih.gov/pubmed/37717036 http://dx.doi.org/10.1038/s41467-023-41303-9 |
Ejemplares similares
-
Deep learning geometrical potential for high-accuracy ab initio protein structure prediction
por: Li, Yang, et al.
Publicado: (2022) -
Fast and accurate Ab Initio Protein structure prediction using deep learning potentials
por: Pearce, Robin, et al.
Publicado: (2022) -
Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions
por: Mortuza, S. M., et al.
Publicado: (2021) -
Approaches to ab initio molecular replacement of α-helical transmembrane proteins
por: Thomas, Jens M. H., et al.
Publicado: (2017) -
Fueling ab initio folding with marine metagenomics enables structure and function predictions of new protein families
por: Wang, Yan, et al.
Publicado: (2019)