Cargando…
Organic walled microfossils in wet peperites from the early Cretaceous Paraná-Etendeka volcanism of Brazil
Large igneous provinces (LIPs) are major magmatic events that have a significant impact on the global environment and the biosphere, for example as triggers of mass extinctions. LIPs provide an excellent sedimentological and geochemical record of short but intense periods of geological activity in t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505181/ https://www.ncbi.nlm.nih.gov/pubmed/37717103 http://dx.doi.org/10.1038/s41598-023-42483-6 |
Sumario: | Large igneous provinces (LIPs) are major magmatic events that have a significant impact on the global environment and the biosphere, for example as triggers of mass extinctions. LIPs provide an excellent sedimentological and geochemical record of short but intense periods of geological activity in the past, but their contribution towards understanding ancient life is much more restricted due to the destructive nature of their igneous origin. Here, we provide the first paleontological evidence for organic walled microfossils extracted from wet peperites from the Early Cretaceous Paraná-Etendeka intertrappean deposits of the Paraná basin in Brazil. Wet peperites are a volcaniclastic rock formed by the interaction of lava and subaqueous sediments.The Paraná-Etendeka was formed during the Valanginian (ca. 132 Ma) as a continental flood basalt in present day South America and Namibia, and released enormous amounts of carbon dioxide, sulfur dioxide, methane and hydrogen fluoride into the atmosphere. The organic walled microfossils recovered from the Paraná-Etendeka peperites include pollen grains, spores, acritarchs, and other remains of unidentifiable organic matter. In addition to the peperites, organic walled microfossils were also found in heterolithic sandstones and interpillow sandstones. Our findings represent the first insight into the biodiversity of the Paraná Basin during the Early Cretaceous during a period of intense magmatism, and the microfossil assemblages corroborate a regional paleoclimatic transition from arid to more humid conditions that were likely induced by the volcanic activity. We corroborate the potential of wet peperite rocks as a valuable source of paleobiological data and emphasize the importance of sampling volcaniclastic units that have been traditionally considered with lower fossiliferous potential due to their igneous origin. |
---|