Cargando…

Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene

This paper tackles the challenge of accurate depth estimation from monocular laparoscopic images in dynamic surgical environments. The lack of reliable ground truth due to inconsistencies within these images makes this a complex task. Further complicating the learning process is the presence of nois...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirohata, Yasuhide, Sogabe, Maina, Miyazaki, Tetsuro, Kawase, Toshihiro, Kawashima, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505201/
https://www.ncbi.nlm.nih.gov/pubmed/37717055
http://dx.doi.org/10.1038/s41598-023-42713-x
_version_ 1785106871262117888
author Hirohata, Yasuhide
Sogabe, Maina
Miyazaki, Tetsuro
Kawase, Toshihiro
Kawashima, Kenji
author_facet Hirohata, Yasuhide
Sogabe, Maina
Miyazaki, Tetsuro
Kawase, Toshihiro
Kawashima, Kenji
author_sort Hirohata, Yasuhide
collection PubMed
description This paper tackles the challenge of accurate depth estimation from monocular laparoscopic images in dynamic surgical environments. The lack of reliable ground truth due to inconsistencies within these images makes this a complex task. Further complicating the learning process is the presence of noise elements like bleeding and smoke. We propose a model learning framework that uses a generic laparoscopic surgery video dataset for training, aimed at achieving precise monocular depth estimation in dynamic surgical settings. The architecture employs binocular disparity confidence information as a self-supervisory signal, along with the disparity information from a stereo laparoscope. Our method ensures robust learning amidst outliers, influenced by tissue deformation, smoke, and surgical instruments, by utilizing a unique loss function. This function adjusts the selection and weighting of depth data for learning based on their given confidence. We trained the model using the Hamlyn Dataset and verified it with Hamlyn Dataset test data and a static dataset. The results show exceptional generalization performance and efficacy for various scene dynamics, laparoscope types, and surgical sites.
format Online
Article
Text
id pubmed-10505201
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105052012023-09-18 Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene Hirohata, Yasuhide Sogabe, Maina Miyazaki, Tetsuro Kawase, Toshihiro Kawashima, Kenji Sci Rep Article This paper tackles the challenge of accurate depth estimation from monocular laparoscopic images in dynamic surgical environments. The lack of reliable ground truth due to inconsistencies within these images makes this a complex task. Further complicating the learning process is the presence of noise elements like bleeding and smoke. We propose a model learning framework that uses a generic laparoscopic surgery video dataset for training, aimed at achieving precise monocular depth estimation in dynamic surgical settings. The architecture employs binocular disparity confidence information as a self-supervisory signal, along with the disparity information from a stereo laparoscope. Our method ensures robust learning amidst outliers, influenced by tissue deformation, smoke, and surgical instruments, by utilizing a unique loss function. This function adjusts the selection and weighting of depth data for learning based on their given confidence. We trained the model using the Hamlyn Dataset and verified it with Hamlyn Dataset test data and a static dataset. The results show exceptional generalization performance and efficacy for various scene dynamics, laparoscope types, and surgical sites. Nature Publishing Group UK 2023-09-16 /pmc/articles/PMC10505201/ /pubmed/37717055 http://dx.doi.org/10.1038/s41598-023-42713-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hirohata, Yasuhide
Sogabe, Maina
Miyazaki, Tetsuro
Kawase, Toshihiro
Kawashima, Kenji
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
title Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
title_full Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
title_fullStr Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
title_full_unstemmed Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
title_short Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
title_sort confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505201/
https://www.ncbi.nlm.nih.gov/pubmed/37717055
http://dx.doi.org/10.1038/s41598-023-42713-x
work_keys_str_mv AT hirohatayasuhide confidenceawareselfsupervisedlearningfordensemonoculardepthestimationindynamiclaparoscopicscene
AT sogabemaina confidenceawareselfsupervisedlearningfordensemonoculardepthestimationindynamiclaparoscopicscene
AT miyazakitetsuro confidenceawareselfsupervisedlearningfordensemonoculardepthestimationindynamiclaparoscopicscene
AT kawasetoshihiro confidenceawareselfsupervisedlearningfordensemonoculardepthestimationindynamiclaparoscopicscene
AT kawashimakenji confidenceawareselfsupervisedlearningfordensemonoculardepthestimationindynamiclaparoscopicscene