Cargando…
Confidence-aware self-supervised learning for dense monocular depth estimation in dynamic laparoscopic scene
This paper tackles the challenge of accurate depth estimation from monocular laparoscopic images in dynamic surgical environments. The lack of reliable ground truth due to inconsistencies within these images makes this a complex task. Further complicating the learning process is the presence of nois...
Autores principales: | Hirohata, Yasuhide, Sogabe, Maina, Miyazaki, Tetsuro, Kawase, Toshihiro, Kawashima, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505201/ https://www.ncbi.nlm.nih.gov/pubmed/37717055 http://dx.doi.org/10.1038/s41598-023-42713-x |
Ejemplares similares
-
DCPNet: A Densely Connected Pyramid Network for Monocular Depth Estimation
por: Lai, Zhitong, et al.
Publicado: (2021) -
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Fan, Chao, et al.
Publicado: (2021) -
Online supervised attention-based recurrent depth estimation from monocular video
por: Maslov, Dmitrii, et al.
Publicado: (2020) -
Monocular Depth Estimation with Self-Supervised Learning for Vineyard Unmanned Agricultural Vehicle
por: Cui, Xue-Zhi, et al.
Publicado: (2022) -
Self-supervised monocular depth estimation for high field of view colonoscopy cameras
por: Mathew, Alwyn, et al.
Publicado: (2023)