Cargando…

Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications

Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurzyk, Agata, Szwed-Georgiou, Aleksandra, Pagacz, Joanna, Antosik, Agnieszka, Tymowicz-Grzyb, Paulina, Gerle, Anna, Szterner, Piotr, Włodarczyk, Marcin, Płociński, Przemysław, Urbaniak, Mateusz M., Rudnicka, Karolina, Biernat, Monika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505220/
https://www.ncbi.nlm.nih.gov/pubmed/37717040
http://dx.doi.org/10.1038/s41598-023-42271-2
_version_ 1785106876133801984
author Kurzyk, Agata
Szwed-Georgiou, Aleksandra
Pagacz, Joanna
Antosik, Agnieszka
Tymowicz-Grzyb, Paulina
Gerle, Anna
Szterner, Piotr
Włodarczyk, Marcin
Płociński, Przemysław
Urbaniak, Mateusz M.
Rudnicka, Karolina
Biernat, Monika
author_facet Kurzyk, Agata
Szwed-Georgiou, Aleksandra
Pagacz, Joanna
Antosik, Agnieszka
Tymowicz-Grzyb, Paulina
Gerle, Anna
Szterner, Piotr
Włodarczyk, Marcin
Płociński, Przemysław
Urbaniak, Mateusz M.
Rudnicka, Karolina
Biernat, Monika
author_sort Kurzyk, Agata
collection PubMed
description Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg(2+)), strontium (Sr(2+)), and zinc (Zn(2+)). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, β-tricalcium phosphate (β-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.
format Online
Article
Text
id pubmed-10505220
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105052202023-09-18 Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications Kurzyk, Agata Szwed-Georgiou, Aleksandra Pagacz, Joanna Antosik, Agnieszka Tymowicz-Grzyb, Paulina Gerle, Anna Szterner, Piotr Włodarczyk, Marcin Płociński, Przemysław Urbaniak, Mateusz M. Rudnicka, Karolina Biernat, Monika Sci Rep Article Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg(2+)), strontium (Sr(2+)), and zinc (Zn(2+)). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, β-tricalcium phosphate (β-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration. Nature Publishing Group UK 2023-09-16 /pmc/articles/PMC10505220/ /pubmed/37717040 http://dx.doi.org/10.1038/s41598-023-42271-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kurzyk, Agata
Szwed-Georgiou, Aleksandra
Pagacz, Joanna
Antosik, Agnieszka
Tymowicz-Grzyb, Paulina
Gerle, Anna
Szterner, Piotr
Włodarczyk, Marcin
Płociński, Przemysław
Urbaniak, Mateusz M.
Rudnicka, Karolina
Biernat, Monika
Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
title Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
title_full Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
title_fullStr Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
title_full_unstemmed Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
title_short Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
title_sort calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505220/
https://www.ncbi.nlm.nih.gov/pubmed/37717040
http://dx.doi.org/10.1038/s41598-023-42271-2
work_keys_str_mv AT kurzykagata calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT szwedgeorgioualeksandra calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT pagaczjoanna calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT antosikagnieszka calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT tymowiczgrzybpaulina calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT gerleanna calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT szternerpiotr calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT włodarczykmarcin calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT płocinskiprzemysław calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT urbaniakmateuszm calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT rudnickakarolina calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications
AT biernatmonika calcinationandionsubstitutionimprovephysicochemicalandbiologicalpropertiesofnanohydroxyapatiteforbonetissueengineeringapplications