Cargando…

Clinical Significance of NAT2 Genetic Variations in Type II Diabetes Mellitus and Lipid Regulation

BACKGROUND: N-acetyltransferase 2 (NAT2) enzyme is a Phase II drug-metabolizing enzyme that metabolizes different compounds. Genetic variations in NAT2 can influence the enzyme’s activity and potentially lead to the development of certain diseases. AIM: This study aimed to investigate the associatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Jarrar, Yazun, Abudahab, Sara, Abdul-Wahab, Ghasaq, Zaiter, Dana, Madani, Abdalla, Abaalkhail, Sara J, Abulebdah, Dina, Alhawari, Hussam, Musleh, Rami, Lee, Su-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505377/
https://www.ncbi.nlm.nih.gov/pubmed/37724295
http://dx.doi.org/10.2147/PGPM.S422495
Descripción
Sumario:BACKGROUND: N-acetyltransferase 2 (NAT2) enzyme is a Phase II drug-metabolizing enzyme that metabolizes different compounds. Genetic variations in NAT2 can influence the enzyme’s activity and potentially lead to the development of certain diseases. AIM: This study aimed to investigate the association of NAT2 variants with the risk of Type II diabetes mellitus (T2DM) and the lipid profile among Jordanian patients. METHODS: We sequenced the whole protein-coding region in NAT2 using Sanger’s method among a sample of 45 Jordanian T2DM patients and 50 control subjects. Moreover, we analyzed the lipid profiles of the patients and examined any potential associations with NAT2 variants. RESULTS: This study revealed that the heterozygous NAT2*13 C/T genotype is significantly (P = 0.03) more common among T2DM (44%) than non-T2DM subjects (23.5%). Furthermore, the frequency of homozygous NAT2*13 T/T genotype was found to be significantly higher (P = 0.03) among T2DM patients (26.7%) compared to that of non-T2DM subjects (11%). The heterozygous NAT2*7 G/A genotype was exclusively observed in T2DM patients (11.1%) and absent in the control non-T2DM group. Moreover, among T2DM patients, those with a homozygous NAT2*11 T/T genotype exhibited significantly higher levels of triglycerides (381.50 ± 9.19 ng/dL) with a P value of 0.01 compared to those with heterozygous NAT2*11 C/T (136.23 ± 51.12 ng/dL) or wild-type NAT2*11 C/C (193.65 ± 109.89 ng/dL) genotypes. T2DM patients with homozygous NAT2*12 G/G genotype had a significantly (P = 0.04) higher triglyceride levels (275.67 ± 183.42 ng/dL) than the heterozygous NAT2*12 A/G (140.02 ± 49.53 ng/dL) and the wild NAT2*12 A/A (193.65 ± 109.89 ng/dL). CONCLUSION: The finding in this study suggests that the NAT2 gene is a potential biomarker for the development of T2DM and changes in triglyceride levels among Jordanians. However, it is important to note that our sample size was limited; therefore, further clinical studies with a larger cohort are necessary to validate these findings.