Cargando…
Machine and deep learning approaches to understand and predict habitat suitability for seabird breeding
The way animals select their breeding habitat may have great impacts on individual fitness. This complex process depends on the integration of information on various environmental factors, over a wide range of spatiotemporal scales. For seabirds, breeding habitat selection integrates both land and s...
Autores principales: | Garcia‐Quintas, Antonio, Roy, Amédée, Barbraud, Christophe, Demarcq, Hervé, Denis, Dennis, Lanco Bertrand, Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505760/ https://www.ncbi.nlm.nih.gov/pubmed/37727776 http://dx.doi.org/10.1002/ece3.10549 |
Ejemplares similares
-
Deep inference of seabird dives from GPS-only records: Performance and generalization properties
por: Roy, Amédée, et al.
Publicado: (2022) -
Airflow modelling predicts seabird breeding habitat across islands
por: Lempidakis, Emmanouil, et al.
Publicado: (2021) -
Extreme ecological response of a seabird community to unprecedented sea ice cover
por: Barbraud, Christophe, et al.
Publicado: (2015) -
From early life to senescence: individual heterogeneity in a long‐lived seabird
por: Fay, Rémi, et al.
Publicado: (2017) -
Breeding habitat loss reveals limited foraging flexibility and increases foraging effort in a colonial breeding seabird
por: Kavelaars, Marwa M., et al.
Publicado: (2020)