Cargando…
Brain Tumor Classification based on Improved Stacked Ensemble Deep Learning Methods
OBJECTIVE: Brain Tumor diagnostic prediction is essential for assisting radiologists and other healthcare professionals in identifying and classifying brain tumors. For the diagnosis and treatment of cancer diseases, prediction and classification accuracy are crucial. The aim of this study was to im...
Autores principales: | Al-Azzwi, Zobeda Hatif Naji, Nazarov, A.N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505861/ https://www.ncbi.nlm.nih.gov/pubmed/37378946 http://dx.doi.org/10.31557/APJCP.2023.24.6.2141 |
Ejemplares similares
-
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
por: Bakasa, Wilson, et al.
Publicado: (2023) -
A stacking ensemble deep learning approach to cancer type classification based on TCGA data
por: Mohammed, Mohanad, et al.
Publicado: (2021) -
Comparing Stacking Ensemble Techniques to Improve Musculoskeletal Fracture Image Classification
por: Kandel, Ibrahem, et al.
Publicado: (2021) -
Ensemble deep learning for brain tumor detection
por: Alsubai, Shtwai, et al.
Publicado: (2022) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023)