Cargando…
DeepCAC: a deep learning approach on DNA transcription factors classification based on multi-head self-attention and concatenate convolutional neural network
Understanding gene expression processes necessitates the accurate classification and identification of transcription factors, which is supported by high-throughput sequencing technologies. However, these techniques suffer from inherent limitations such as time consumption and high costs. To address...
Autores principales: | Zhang, Jidong, Liu, Bo, Wu, Jiahui, Wang, Zhihan, Li, Jianqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506269/ https://www.ncbi.nlm.nih.gov/pubmed/37723425 http://dx.doi.org/10.1186/s12859-023-05469-9 |
Ejemplares similares
-
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites
por: Zhang, Jidong, et al.
Publicado: (2022) -
COVID-19 classification using deep feature concatenation technique
por: Saad, Waleed, et al.
Publicado: (2021) -
CPD-CCNN: classification of pepper disease using a concatenation of convolutional neural network models
por: Bezabih, Yohannes Agegnhu, et al.
Publicado: (2023) -
Classification of Blood Pressure Levels Based on Photoplethysmogram and Electrocardiogram Signals with a Concatenated Convolutional Neural Network
por: Fuadah, Yunendah Nur, et al.
Publicado: (2022) -
Gas Classification Using Deep Convolutional Neural Networks
por: Peng, Pai, et al.
Publicado: (2018)