Cargando…
Disparities in spatially variable gene calling highlight the need for benchmarking spatial transcriptomics methods
Identifying spatially variable genes (SVGs) is a key step in the analysis of spatially resolved transcriptomics data. SVGs provide biological insights by defining transcriptomic differences within tissues, which was previously unachievable using RNA-sequencing technologies. However, the increasing n...
Autores principales: | Charitakis, Natalie, Salim, Agus, Piers, Adam T., Watt, Kevin I., Porrello, Enzo R., Elliott, David A., Ramialison, Mirana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506280/ https://www.ncbi.nlm.nih.gov/pubmed/37723583 http://dx.doi.org/10.1186/s13059-023-03045-1 |
Ejemplares similares
-
Spatially resolved transcriptomics in immersive environments
por: Bienroth, Denis, et al.
Publicado: (2022) -
From whole-mount to single-cell spatial assessment of gene expression in 3D
por: Waylen, Lisa N., et al.
Publicado: (2020) -
CD90 Marks a Mesenchymal Program in Human Thymic Epithelial Cells In Vitro and In Vivo
por: Sun, Shicheng, et al.
Publicado: (2022) -
MonaGO: a novel gene ontology enrichment analysis visualisation system
por: Xin, Ziyin, et al.
Publicado: (2022) -
Multicellular Transcriptional Analysis of Mammalian Heart Regeneration
por: Quaife-Ryan, Gregory A., et al.
Publicado: (2017)