Cargando…
A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection
Intestinal colonization with pathogens and antimicrobial-resistant organisms (AROs) is associated with increased risk of infection. Fecal microbiota transplant (FMT) has successfully been used to cure recurrent Clostridioides difficile infection (rCDI) and to decolonize intestinal AROs. However, FMT...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506460/ https://www.ncbi.nlm.nih.gov/pubmed/37404011 http://dx.doi.org/10.1128/mbio.03482-22 |
_version_ | 1785107122465275904 |
---|---|
author | Rooney, Ashley M. Cochrane, Kyla Fedsin, Stephanie Yao, Samantha Anwer, Shaista Dehmiwal, Satyender Hota, Susy Poutanen, Susan Allen-Vercoe, Emma Coburn, Bryan |
author_facet | Rooney, Ashley M. Cochrane, Kyla Fedsin, Stephanie Yao, Samantha Anwer, Shaista Dehmiwal, Satyender Hota, Susy Poutanen, Susan Allen-Vercoe, Emma Coburn, Bryan |
author_sort | Rooney, Ashley M. |
collection | PubMed |
description | Intestinal colonization with pathogens and antimicrobial-resistant organisms (AROs) is associated with increased risk of infection. Fecal microbiota transplant (FMT) has successfully been used to cure recurrent Clostridioides difficile infection (rCDI) and to decolonize intestinal AROs. However, FMT has significant practical barriers to safe and broad implementation. Microbial consortia represent a novel strategy for ARO and pathogen decolonization, with practical and safety advantages over FMT. We undertook an investigator-initiated analysis of stool samples collected from previous interventional studies of a microbial consortium, microbial ecosystem therapeutic (MET-2), and FMT for rCDI before and after treatment. Our aim was to assess whether MET-2 was associated with decreased Pseudomonadota (Proteobacteria) and antimicrobial resistance gene (ARG) burden with similar effects to FMT. Participants were selected for inclusion if baseline stool had Pseudomonadota relative abundance ≥10%. Pre- and post-treatment Pseudomonadota relative abundance, total ARGs, and obligate anaerobe and butyrate-producer relative abundances were determined by shotgun metagenomic sequencing. MET-2 administration had similar effects to FMT on microbiome outcomes. The median Pseudomonadota relative abundance decreased by four logs after MET-2 treatment, a greater decrease than that observed after FMT. Total ARGs decreased, while beneficial obligate anaerobe and butyrate-producer relative abundances increased. The observed microbiome response remained stable over 4 months post-administration for all outcomes. IMPORTANCE: Overgrowth of intestinal pathogens and AROs is associated with increased risk of infection. With the rise in antimicrobial resistance, new therapeutic strategies that decrease pathogen and ARO colonization in the gut are needed. We evaluated whether a microbial consortium had similar effects to FMT on Pseudomonadota abundances and ARGs as well as obligate anaerobes and beneficial butyrate producers in individuals with high Pseudomonadota relative abundance at baseline. This study provides support for a randomized, controlled clinical trial of microbial consortia (such as MET-2) for ARO decolonization and anaerobe repletion. |
format | Online Article Text |
id | pubmed-10506460 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-105064602023-09-19 A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection Rooney, Ashley M. Cochrane, Kyla Fedsin, Stephanie Yao, Samantha Anwer, Shaista Dehmiwal, Satyender Hota, Susy Poutanen, Susan Allen-Vercoe, Emma Coburn, Bryan mBio Research Article Intestinal colonization with pathogens and antimicrobial-resistant organisms (AROs) is associated with increased risk of infection. Fecal microbiota transplant (FMT) has successfully been used to cure recurrent Clostridioides difficile infection (rCDI) and to decolonize intestinal AROs. However, FMT has significant practical barriers to safe and broad implementation. Microbial consortia represent a novel strategy for ARO and pathogen decolonization, with practical and safety advantages over FMT. We undertook an investigator-initiated analysis of stool samples collected from previous interventional studies of a microbial consortium, microbial ecosystem therapeutic (MET-2), and FMT for rCDI before and after treatment. Our aim was to assess whether MET-2 was associated with decreased Pseudomonadota (Proteobacteria) and antimicrobial resistance gene (ARG) burden with similar effects to FMT. Participants were selected for inclusion if baseline stool had Pseudomonadota relative abundance ≥10%. Pre- and post-treatment Pseudomonadota relative abundance, total ARGs, and obligate anaerobe and butyrate-producer relative abundances were determined by shotgun metagenomic sequencing. MET-2 administration had similar effects to FMT on microbiome outcomes. The median Pseudomonadota relative abundance decreased by four logs after MET-2 treatment, a greater decrease than that observed after FMT. Total ARGs decreased, while beneficial obligate anaerobe and butyrate-producer relative abundances increased. The observed microbiome response remained stable over 4 months post-administration for all outcomes. IMPORTANCE: Overgrowth of intestinal pathogens and AROs is associated with increased risk of infection. With the rise in antimicrobial resistance, new therapeutic strategies that decrease pathogen and ARO colonization in the gut are needed. We evaluated whether a microbial consortium had similar effects to FMT on Pseudomonadota abundances and ARGs as well as obligate anaerobes and beneficial butyrate producers in individuals with high Pseudomonadota relative abundance at baseline. This study provides support for a randomized, controlled clinical trial of microbial consortia (such as MET-2) for ARO decolonization and anaerobe repletion. American Society for Microbiology 2023-07-05 /pmc/articles/PMC10506460/ /pubmed/37404011 http://dx.doi.org/10.1128/mbio.03482-22 Text en Copyright © 2023 Rooney et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Rooney, Ashley M. Cochrane, Kyla Fedsin, Stephanie Yao, Samantha Anwer, Shaista Dehmiwal, Satyender Hota, Susy Poutanen, Susan Allen-Vercoe, Emma Coburn, Bryan A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection |
title | A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection |
title_full | A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection |
title_fullStr | A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection |
title_full_unstemmed | A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection |
title_short | A microbial consortium alters intestinal Pseudomonadota and antimicrobial resistance genes in individuals with recurrent Clostridioides difficile infection |
title_sort | microbial consortium alters intestinal pseudomonadota and antimicrobial resistance genes in individuals with recurrent clostridioides difficile infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506460/ https://www.ncbi.nlm.nih.gov/pubmed/37404011 http://dx.doi.org/10.1128/mbio.03482-22 |
work_keys_str_mv | AT rooneyashleym amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT cochranekyla amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT fedsinstephanie amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT yaosamantha amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT anwershaista amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT dehmiwalsatyender amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT hotasusy amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT poutanensusan amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT allenvercoeemma amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT coburnbryan amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT amicrobialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT rooneyashleym microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT cochranekyla microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT fedsinstephanie microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT yaosamantha microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT anwershaista microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT dehmiwalsatyender microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT hotasusy microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT poutanensusan microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT allenvercoeemma microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT coburnbryan microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection AT microbialconsortiumaltersintestinalpseudomonadotaandantimicrobialresistancegenesinindividualswithrecurrentclostridioidesdifficileinfection |