Cargando…

Logical gates in ensembles of proteinoid microspheres

Proteinoids are thermal proteins which swell into microspheres in aqueous solution. Ensembles of proteinoids produce electrical spiking activity similar to that of neurons. We introduce a novel method for implementing logical gates in the ensembles of proteinoid microspheres using chronoamperometry....

Descripción completa

Detalles Bibliográficos
Autores principales: Mougkogiannis, Panagiotis, Adamatzky, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506713/
https://www.ncbi.nlm.nih.gov/pubmed/37721941
http://dx.doi.org/10.1371/journal.pone.0289433
Descripción
Sumario:Proteinoids are thermal proteins which swell into microspheres in aqueous solution. Ensembles of proteinoids produce electrical spiking activity similar to that of neurons. We introduce a novel method for implementing logical gates in the ensembles of proteinoid microspheres using chronoamperometry. Chronoamperometry is a technique that involves applying a voltage pulse to proteinoid microspheres and measuring their current response. We have observed that proteinoids exhibit distinct current patterns that align with various logical outputs. We identify four types of logical gates: AND, OR, XOR, and NAND. These gates are determined by the current response of proteinoid microspheres. Additionally, we demonstrate that proteinoid microspheres have the ability to modify their current response over time, which is influenced by their previous exposure to voltage. This indicates that they possess a capacity for learning and are capable of adapting to their environment. Our research showcases the ability of proteinoid microspheres to perform logical operations and computations through their inherent electrical properties.