Cargando…
Enhancing Offensive Language Detection with Data Augmentation and Knowledge Distillation
Offensive language detection has received important attention and plays a crucial role in promoting healthy communication on social platforms, as well as promoting the safe deployment of large language models. Training data is the basis for developing detectors; however, the available offense-relate...
Autores principales: | Deng, Jiawen, Chen, Zhuang, Sun, Hao, Zhang, Zhexin, Wu, Jincenzi, Nakagawa, Satoshi, Ren, Fuji, Huang, Minlie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506735/ https://www.ncbi.nlm.nih.gov/pubmed/37727321 http://dx.doi.org/10.34133/research.0189 |
Ejemplares similares
-
Investigating cross-lingual training for offensive language detection
por: Pelicon, Andraž, et al.
Publicado: (2021) -
Detection of offensive terms in resource-poor language using machine learning algorithms
por: Raza, Muhammad Owais, et al.
Publicado: (2023) -
Identification of offensive language in Urdu using semantic and embedding models
por: Hussain, Sajid, et al.
Publicado: (2022) -
BERTtoCNN: Similarity-preserving enhanced knowledge distillation for stance detection
por: Li, Yang, et al.
Publicado: (2021) -
Offensive Breath
por: Kaggey, H. V.
Publicado: (1872)