Cargando…
Monotonicity and Symmetry of Nonnegative Solutions to -Δ u=f(u) in Half-Planes and Strips
We consider nonnegative solutions to [Formula: see text] in half-planes and strips, under zero Dirichlet boundary condition. Exploiting a rotating and sliding line technique, we prove symmetry and monotonicity properties of the solutions, under very general assumptions on the nonlinearity f. In fact...
Autores principales: | Farina, Alberto, Sciunzi, Berardino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506853/ https://www.ncbi.nlm.nih.gov/pubmed/37727771 http://dx.doi.org/10.1515/ans-2017-0010 |
Ejemplares similares
-
Monotonicity of the number of positive entries in nonnegative matrix powers
por: Xie, Qimiao
Publicado: (2018) -
Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs
por: Hu, Hao, et al.
Publicado: (2022) -
$ U _{3} × U _{3} $ symmetry for collinear processes
por: Ruegg, Henri, et al.
Publicado: (1966) -
Nonnegative matrices
por: Minc, Henryk
Publicado: (1988) -
Flat level set regularity of p-Laplace phase transitions
por: Valdinoci, Enrico, et al.
Publicado: (2006)