Cargando…
Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography
BACKGROUND: To propose a deep learning architecture for automatically detecting the complex structure of the aortic annulus plane using cardiac computed tomography (CT) for transcatheter aortic valve replacement (TAVR). METHODS: This study retrospectively reviewed consecutive patients who underwent...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Academy of Medical Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506901/ https://www.ncbi.nlm.nih.gov/pubmed/37724499 http://dx.doi.org/10.3346/jkms.2023.38.e306 |
_version_ | 1785107200897712128 |
---|---|
author | Cho, Yongwon Park, Soojung Hwang, Sung Ho Ko, Minseok Lim, Do-Sun Yu, Cheol Woong Park, Seong-Mi Kim, Mi-Na Oh, Yu-Whan Yang, Guang |
author_facet | Cho, Yongwon Park, Soojung Hwang, Sung Ho Ko, Minseok Lim, Do-Sun Yu, Cheol Woong Park, Seong-Mi Kim, Mi-Na Oh, Yu-Whan Yang, Guang |
author_sort | Cho, Yongwon |
collection | PubMed |
description | BACKGROUND: To propose a deep learning architecture for automatically detecting the complex structure of the aortic annulus plane using cardiac computed tomography (CT) for transcatheter aortic valve replacement (TAVR). METHODS: This study retrospectively reviewed consecutive patients who underwent TAVR between January 2017 and July 2020 at a tertiary medical center. Annulus Detection Permuted AdaIN network (ADPANet) based on a three-dimensional (3D) U-net architecture was developed to detect and localize the aortic annulus plane using cardiac CT. Patients (N = 72) who underwent TAVR between January 2017 and July 2020 at a tertiary medical center were enrolled. Ground truth using a limited dataset was delineated manually by three cardiac radiologists. Training, tuning, and testing sets (70:10:20) were used to build the deep learning model. The performance of ADPANet for detecting the aortic annulus plane was analyzed using the root mean square error (RMSE) and dice similarity coefficient (DSC). RESULTS: In this study, the total dataset consisted of 72 selected scans from patients who underwent TAVR. The RMSE and DSC values for the aortic annulus plane using ADPANet were 55.078 ± 35.794 and 0.496 ± 0.217, respectively. CONCLUSION: Our deep learning framework was feasible to detect the 3D complex structure of the aortic annulus plane using cardiac CT for TAVR. The performance of our algorithms was higher than other convolutional neural networks. |
format | Online Article Text |
id | pubmed-10506901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Korean Academy of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-105069012023-09-20 Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography Cho, Yongwon Park, Soojung Hwang, Sung Ho Ko, Minseok Lim, Do-Sun Yu, Cheol Woong Park, Seong-Mi Kim, Mi-Na Oh, Yu-Whan Yang, Guang J Korean Med Sci Original Article BACKGROUND: To propose a deep learning architecture for automatically detecting the complex structure of the aortic annulus plane using cardiac computed tomography (CT) for transcatheter aortic valve replacement (TAVR). METHODS: This study retrospectively reviewed consecutive patients who underwent TAVR between January 2017 and July 2020 at a tertiary medical center. Annulus Detection Permuted AdaIN network (ADPANet) based on a three-dimensional (3D) U-net architecture was developed to detect and localize the aortic annulus plane using cardiac CT. Patients (N = 72) who underwent TAVR between January 2017 and July 2020 at a tertiary medical center were enrolled. Ground truth using a limited dataset was delineated manually by three cardiac radiologists. Training, tuning, and testing sets (70:10:20) were used to build the deep learning model. The performance of ADPANet for detecting the aortic annulus plane was analyzed using the root mean square error (RMSE) and dice similarity coefficient (DSC). RESULTS: In this study, the total dataset consisted of 72 selected scans from patients who underwent TAVR. The RMSE and DSC values for the aortic annulus plane using ADPANet were 55.078 ± 35.794 and 0.496 ± 0.217, respectively. CONCLUSION: Our deep learning framework was feasible to detect the 3D complex structure of the aortic annulus plane using cardiac CT for TAVR. The performance of our algorithms was higher than other convolutional neural networks. The Korean Academy of Medical Sciences 2023-09-04 /pmc/articles/PMC10506901/ /pubmed/37724499 http://dx.doi.org/10.3346/jkms.2023.38.e306 Text en © 2023 The Korean Academy of Medical Sciences. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Cho, Yongwon Park, Soojung Hwang, Sung Ho Ko, Minseok Lim, Do-Sun Yu, Cheol Woong Park, Seong-Mi Kim, Mi-Na Oh, Yu-Whan Yang, Guang Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography |
title | Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography |
title_full | Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography |
title_fullStr | Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography |
title_full_unstemmed | Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography |
title_short | Aortic Annulus Detection Based on Deep Learning for Transcatheter Aortic Valve Replacement Using Cardiac Computed Tomography |
title_sort | aortic annulus detection based on deep learning for transcatheter aortic valve replacement using cardiac computed tomography |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506901/ https://www.ncbi.nlm.nih.gov/pubmed/37724499 http://dx.doi.org/10.3346/jkms.2023.38.e306 |
work_keys_str_mv | AT choyongwon aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT parksoojung aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT hwangsungho aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT kominseok aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT limdosun aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT yucheolwoong aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT parkseongmi aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT kimmina aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT ohyuwhan aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography AT yangguang aorticannulusdetectionbasedondeeplearningfortranscatheteraorticvalvereplacementusingcardiaccomputedtomography |