Cargando…
Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507033/ https://www.ncbi.nlm.nih.gov/pubmed/37723136 http://dx.doi.org/10.1038/s41526-023-00319-7 |
_version_ | 1785107222890545152 |
---|---|
author | Ha, Pin Kwak, Jin Hee Zhang, Yulong Shi, Jiayu Tran, Luan Liu, Timothy Pan Pan, Hsin-Chuan Lee, Samantha Kim, Jong Kil Chen, Eric Shirazi-Fard, Yasaman Stodieck, Louis S. Lin, Andy Zheng, Zhong Dong, Stella Nuo Zhang, Xinli Wu, Benjamin M. Ting, Kang Soo, Chia |
author_facet | Ha, Pin Kwak, Jin Hee Zhang, Yulong Shi, Jiayu Tran, Luan Liu, Timothy Pan Pan, Hsin-Chuan Lee, Samantha Kim, Jong Kil Chen, Eric Shirazi-Fard, Yasaman Stodieck, Louis S. Lin, Andy Zheng, Zhong Dong, Stella Nuo Zhang, Xinli Wu, Benjamin M. Ting, Kang Soo, Chia |
author_sort | Ha, Pin |
collection | PubMed |
description | Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1’s osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke). |
format | Online Article Text |
id | pubmed-10507033 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105070332023-09-20 Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice Ha, Pin Kwak, Jin Hee Zhang, Yulong Shi, Jiayu Tran, Luan Liu, Timothy Pan Pan, Hsin-Chuan Lee, Samantha Kim, Jong Kil Chen, Eric Shirazi-Fard, Yasaman Stodieck, Louis S. Lin, Andy Zheng, Zhong Dong, Stella Nuo Zhang, Xinli Wu, Benjamin M. Ting, Kang Soo, Chia NPJ Microgravity Article Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1’s osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke). Nature Publishing Group UK 2023-09-18 /pmc/articles/PMC10507033/ /pubmed/37723136 http://dx.doi.org/10.1038/s41526-023-00319-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ha, Pin Kwak, Jin Hee Zhang, Yulong Shi, Jiayu Tran, Luan Liu, Timothy Pan Pan, Hsin-Chuan Lee, Samantha Kim, Jong Kil Chen, Eric Shirazi-Fard, Yasaman Stodieck, Louis S. Lin, Andy Zheng, Zhong Dong, Stella Nuo Zhang, Xinli Wu, Benjamin M. Ting, Kang Soo, Chia Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice |
title | Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice |
title_full | Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice |
title_fullStr | Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice |
title_full_unstemmed | Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice |
title_short | Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice |
title_sort | bisphosphonate conjugation enhances the bone-specificity of nell-1-based systemic therapy for spaceflight-induced bone loss in mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507033/ https://www.ncbi.nlm.nih.gov/pubmed/37723136 http://dx.doi.org/10.1038/s41526-023-00319-7 |
work_keys_str_mv | AT hapin bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT kwakjinhee bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT zhangyulong bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT shijiayu bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT tranluan bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT liutimothypan bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT panhsinchuan bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT leesamantha bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT kimjongkil bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT cheneric bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT shirazifardyasaman bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT stodiecklouiss bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT linandy bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT zhengzhong bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT dongstellanuo bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT zhangxinli bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT wubenjaminm bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT tingkang bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice AT soochia bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice |