Cargando…

Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice

Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ha, Pin, Kwak, Jin Hee, Zhang, Yulong, Shi, Jiayu, Tran, Luan, Liu, Timothy Pan, Pan, Hsin-Chuan, Lee, Samantha, Kim, Jong Kil, Chen, Eric, Shirazi-Fard, Yasaman, Stodieck, Louis S., Lin, Andy, Zheng, Zhong, Dong, Stella Nuo, Zhang, Xinli, Wu, Benjamin M., Ting, Kang, Soo, Chia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507033/
https://www.ncbi.nlm.nih.gov/pubmed/37723136
http://dx.doi.org/10.1038/s41526-023-00319-7
_version_ 1785107222890545152
author Ha, Pin
Kwak, Jin Hee
Zhang, Yulong
Shi, Jiayu
Tran, Luan
Liu, Timothy Pan
Pan, Hsin-Chuan
Lee, Samantha
Kim, Jong Kil
Chen, Eric
Shirazi-Fard, Yasaman
Stodieck, Louis S.
Lin, Andy
Zheng, Zhong
Dong, Stella Nuo
Zhang, Xinli
Wu, Benjamin M.
Ting, Kang
Soo, Chia
author_facet Ha, Pin
Kwak, Jin Hee
Zhang, Yulong
Shi, Jiayu
Tran, Luan
Liu, Timothy Pan
Pan, Hsin-Chuan
Lee, Samantha
Kim, Jong Kil
Chen, Eric
Shirazi-Fard, Yasaman
Stodieck, Louis S.
Lin, Andy
Zheng, Zhong
Dong, Stella Nuo
Zhang, Xinli
Wu, Benjamin M.
Ting, Kang
Soo, Chia
author_sort Ha, Pin
collection PubMed
description Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1’s osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke).
format Online
Article
Text
id pubmed-10507033
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105070332023-09-20 Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice Ha, Pin Kwak, Jin Hee Zhang, Yulong Shi, Jiayu Tran, Luan Liu, Timothy Pan Pan, Hsin-Chuan Lee, Samantha Kim, Jong Kil Chen, Eric Shirazi-Fard, Yasaman Stodieck, Louis S. Lin, Andy Zheng, Zhong Dong, Stella Nuo Zhang, Xinli Wu, Benjamin M. Ting, Kang Soo, Chia NPJ Microgravity Article Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1’s osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke). Nature Publishing Group UK 2023-09-18 /pmc/articles/PMC10507033/ /pubmed/37723136 http://dx.doi.org/10.1038/s41526-023-00319-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ha, Pin
Kwak, Jin Hee
Zhang, Yulong
Shi, Jiayu
Tran, Luan
Liu, Timothy Pan
Pan, Hsin-Chuan
Lee, Samantha
Kim, Jong Kil
Chen, Eric
Shirazi-Fard, Yasaman
Stodieck, Louis S.
Lin, Andy
Zheng, Zhong
Dong, Stella Nuo
Zhang, Xinli
Wu, Benjamin M.
Ting, Kang
Soo, Chia
Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
title Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
title_full Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
title_fullStr Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
title_full_unstemmed Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
title_short Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice
title_sort bisphosphonate conjugation enhances the bone-specificity of nell-1-based systemic therapy for spaceflight-induced bone loss in mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507033/
https://www.ncbi.nlm.nih.gov/pubmed/37723136
http://dx.doi.org/10.1038/s41526-023-00319-7
work_keys_str_mv AT hapin bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT kwakjinhee bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT zhangyulong bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT shijiayu bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT tranluan bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT liutimothypan bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT panhsinchuan bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT leesamantha bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT kimjongkil bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT cheneric bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT shirazifardyasaman bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT stodiecklouiss bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT linandy bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT zhengzhong bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT dongstellanuo bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT zhangxinli bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT wubenjaminm bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT tingkang bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice
AT soochia bisphosphonateconjugationenhancesthebonespecificityofnell1basedsystemictherapyforspaceflightinducedbonelossinmice