Cargando…
Cross-national analyses require additional controls to account for the non-independence of nations
Cross-national analyses test hypotheses about the drivers of variation in national outcomes. However, since nations are connected in various ways, such as via spatial proximity and shared cultural ancestry, cross-national analyses often violate assumptions of non-independence, inflating false positi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507061/ https://www.ncbi.nlm.nih.gov/pubmed/37723194 http://dx.doi.org/10.1038/s41467-023-41486-1 |
Sumario: | Cross-national analyses test hypotheses about the drivers of variation in national outcomes. However, since nations are connected in various ways, such as via spatial proximity and shared cultural ancestry, cross-national analyses often violate assumptions of non-independence, inflating false positive rates. Here, we show that, despite being recognised as an important statistical pitfall for over 200 years, cross-national research in economics and psychology still does not sufficiently account for non-independence. In a review of the 100 highest-cited cross-national studies of economic development and values, we find that controls for non-independence are rare. When studies do control for non-independence, our simulations suggest that most commonly used methods are insufficient for reducing false positives in non-independent data. In reanalyses of twelve previous cross-national correlations, half of the estimates are compatible with no association after controlling for non-independence using global proximity matrices. We urge social scientists to sufficiently control for non-independence in cross-national research. |
---|