Cargando…
Malicious traffic detection on sampled network flow data with novelty-detection-based models
Cyber-attacks are a major problem for users, businesses, and institutions. Classical anomaly detection techniques can detect malicious traffic generated in a cyber-attack by analyzing individual network packets. However, routers that manage large traffic loads can only examine some packets. These de...
Autores principales: | Campazas-Vega, Adrián, Crespo-Martínez, Ignacio Samuel, Guerrero-Higueras, Ángel Manuel, Álvarez-Aparicio, Claudia, Matellán, Vicente, Fernández-Llamas, Camino |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507111/ https://www.ncbi.nlm.nih.gov/pubmed/37723267 http://dx.doi.org/10.1038/s41598-023-42618-9 |
Ejemplares similares
-
Flow-Data Gathering Using NetFlow Sensors for Fitting Malicious-Traffic Detection Models
por: Campazas-Vega, Adrián, et al.
Publicado: (2020) -
Biometric recognition through gait analysis
por: Álvarez-Aparicio, Claudia, et al.
Publicado: (2022) -
Tracking People in a Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for Security in Cluttered Environments
por: Guerrero-Higueras, Ángel Manuel, et al.
Publicado: (2019) -
A Framework for Malicious Traffic Detection in IoT Healthcare Environment
por: Hussain, Faisal, et al.
Publicado: (2021) -
Hierarchical Novelty Detection for Traffic Sign Recognition
por: Ruiz, Idoia, et al.
Publicado: (2022)