Cargando…

Cell projection plots: A novel visualization of bone marrow aspirate cytology

Deep models for cell detection have demonstrated utility in bone marrow cytology, showing impressive results in terms of accuracy and computational efficiency. However, these models have yet to be implemented in the clinical diagnostic workflow. Additionally, the metrics used to evaluate cell detect...

Descripción completa

Detalles Bibliográficos
Autores principales: Dehkharghanian, Taher, Mu, Youqing, Ross, Catherine, Sur, Monalisa, Tizhoosh, H.R., Campbell, Clinton J.V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507226/
https://www.ncbi.nlm.nih.gov/pubmed/37732298
http://dx.doi.org/10.1016/j.jpi.2023.100334
Descripción
Sumario:Deep models for cell detection have demonstrated utility in bone marrow cytology, showing impressive results in terms of accuracy and computational efficiency. However, these models have yet to be implemented in the clinical diagnostic workflow. Additionally, the metrics used to evaluate cell detection models are not necessarily aligned with clinical goals and targets. In order to address these issues, we introduce novel, automatically generated visual summaries of bone marrow aspirate specimens called cell projection plots (CPPs). Encompassing relevant biological patterns such as neutrophil maturation, CPPs provide a compact summary of bone marrow aspirate cytology. To gauge clinical relevance, CPPs were inspected by 3 hematopathologists, who decided whether corresponding diagnostic synopses matched with generated CPPs. Pathologists were able to match CPPs to the correct synopsis with a matching degree of 85%. Our finding suggests CPPs can represent clinically relevant information from bone marrow aspirate specimens and may be used to efficiently summarize bone marrow cytology to pathologists. CPPs could be a step toward human-centered implementation of artificial intelligence (AI) in hematopathology, and a basis for a diagnostic-support tool for digital pathology workflows.