Cargando…
Cell projection plots: A novel visualization of bone marrow aspirate cytology
Deep models for cell detection have demonstrated utility in bone marrow cytology, showing impressive results in terms of accuracy and computational efficiency. However, these models have yet to be implemented in the clinical diagnostic workflow. Additionally, the metrics used to evaluate cell detect...
Autores principales: | Dehkharghanian, Taher, Mu, Youqing, Ross, Catherine, Sur, Monalisa, Tizhoosh, H.R., Campbell, Clinton J.V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507226/ https://www.ncbi.nlm.nih.gov/pubmed/37732298 http://dx.doi.org/10.1016/j.jpi.2023.100334 |
Ejemplares similares
-
Automated bone marrow cytology using deep learning to generate a histogram of cell types
por: Tayebi, Rohollah Moosavi, et al.
Publicado: (2022) -
A BERT model generates diagnostically relevant semantic embeddings from pathology synopses with active learning
por: Mu, Youqing, et al.
Publicado: (2021) -
Bias reduction in representation of histopathology images using deep feature selection
por: Asilian Bidgoli, Azam, et al.
Publicado: (2022) -
Biased data, biased AI: deep networks predict the acquisition site of TCGA images
por: Dehkharghanian, Taher, et al.
Publicado: (2023) -
Comparison of bone marrow aspirate cytology, touch imprint cytology and trephine biopsy for bone marrow evaluation
por: Chandra, Smita, et al.
Publicado: (2011)