Cargando…
Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects
Background: Inferring drug-related side effects is beneficial for reducing drug development cost and time. Current computational prediction methods have concentrated on graph reasoning over heterogeneous graphs comprising the drug and side effect nodes. However, the various topologies and node attri...
Autores principales: | Xuan, Ping, Xu, Kai, Cui, Hui, Nakaguchi, Toshiya, Zhang, Tiangang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507253/ https://www.ncbi.nlm.nih.gov/pubmed/37731739 http://dx.doi.org/10.3389/fphar.2023.1257842 |
Ejemplares similares
-
Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction
por: Xuan, Ping, et al.
Publicado: (2023) -
Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases
por: Xuan, Ping, et al.
Publicado: (2022) -
Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020) -
Cross-Adversarial Learning for Molecular Generation in Drug Design
por: Wu, Banghua, et al.
Publicado: (2022) -
Addendum: Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020)