Cargando…
Isorhamnetin Exerts Antifibrotic Effects by Attenuating Platelet-Derived Growth Factor-BB-induced HSC-T6 Cells Activation via Suppressing PI3K-AKT Signaling Pathway
BACKGROUND: Currently, liver fibrosis is growing worldwide; unfortunately, there is no definite cure for this disease. Hence, understanding the molecular pathways involved in the development of liver fibrosis can help to find a proper treatment. In this study, we aimed to evaluate the effects of iso...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pasteur Institute of Iran
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507286/ https://www.ncbi.nlm.nih.gov/pubmed/37598299 http://dx.doi.org/10.52547/ibj.3948 |
Sumario: | BACKGROUND: Currently, liver fibrosis is growing worldwide; unfortunately, there is no definite cure for this disease. Hence, understanding the molecular pathways involved in the development of liver fibrosis can help to find a proper treatment. In this study, we aimed to evaluate the effects of isorhamnetin as an antifibrotic agent on PDGF-BB-activated HSC-T6 cells in a concentration-dependent manner. We have also attempted to assess signaling pathways that may affect liver fibrosis. METHODS: PDGF-BB was used to activate the HSC-T6 rat hepatic stellate cell line. The activated cells were treated with Isorhamnetin for 24 h. Finally, we compared the mRNA expression level of COLA1 and α-SMA and also the level of phosphorylated AKT protein with the control group. RESULTS: The obtained data revealed a significant increase in the expression level of the COLA1 and α-SMA genes (p > 0.05), as well as phosphorylated AKT protein, in the cells treated with PDGF-BB. In addition, 75 and 100 µM concentrations of Isorhamnetin markedly declined the COLA1 and α-SMA expression and also the phosphorylated AKT protein level in the HSC-T6 cells. CONCLUSION: Our findings suggest that Isorhamnetin decreases HSC-T6 activation, the expression of COLA1 and α-SMA, in vitro, which could act as an antifibrotic element to reduce and treat liver fibrosis disease. |
---|