Cargando…
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study
Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-bas...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507381/ https://www.ncbi.nlm.nih.gov/pubmed/37652006 http://dx.doi.org/10.1016/j.ccell.2023.08.002 |
_version_ | 1785107304671084544 |
---|---|
author | Wagner, Sophia J. Reisenbüchler, Daniel West, Nicholas P. Niehues, Jan Moritz Zhu, Jiefu Foersch, Sebastian Veldhuizen, Gregory Patrick Quirke, Philip Grabsch, Heike I. van den Brandt, Piet A. Hutchins, Gordon G.A. Richman, Susan D. Yuan, Tanwei Langer, Rupert Jenniskens, Josien C.A. Offermans, Kelly Mueller, Wolfram Gray, Richard Gruber, Stephen B. Greenson, Joel K. Rennert, Gad Bonner, Joseph D. Schmolze, Daniel Jonnagaddala, Jitendra Hawkins, Nicholas J. Ward, Robyn L. Morton, Dion Seymour, Matthew Magill, Laura Nowak, Marta Hay, Jennifer Koelzer, Viktor H. Church, David N. Matek, Christian Geppert, Carol Peng, Chaolong Zhi, Cheng Ouyang, Xiaoming James, Jacqueline A. Loughrey, Maurice B. Salto-Tellez, Manuel Brenner, Hermann Hoffmeister, Michael Truhn, Daniel Schnabel, Julia A. Boxberg, Melanie Peng, Tingying Kather, Jakob Nikolas |
author_facet | Wagner, Sophia J. Reisenbüchler, Daniel West, Nicholas P. Niehues, Jan Moritz Zhu, Jiefu Foersch, Sebastian Veldhuizen, Gregory Patrick Quirke, Philip Grabsch, Heike I. van den Brandt, Piet A. Hutchins, Gordon G.A. Richman, Susan D. Yuan, Tanwei Langer, Rupert Jenniskens, Josien C.A. Offermans, Kelly Mueller, Wolfram Gray, Richard Gruber, Stephen B. Greenson, Joel K. Rennert, Gad Bonner, Joseph D. Schmolze, Daniel Jonnagaddala, Jitendra Hawkins, Nicholas J. Ward, Robyn L. Morton, Dion Seymour, Matthew Magill, Laura Nowak, Marta Hay, Jennifer Koelzer, Viktor H. Church, David N. Matek, Christian Geppert, Carol Peng, Chaolong Zhi, Cheng Ouyang, Xiaoming James, Jacqueline A. Loughrey, Maurice B. Salto-Tellez, Manuel Brenner, Hermann Hoffmeister, Michael Truhn, Daniel Schnabel, Julia A. Boxberg, Melanie Peng, Tingying Kather, Jakob Nikolas |
author_sort | Wagner, Sophia J. |
collection | PubMed |
description | Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem. |
format | Online Article Text |
id | pubmed-10507381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105073812023-09-20 Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study Wagner, Sophia J. Reisenbüchler, Daniel West, Nicholas P. Niehues, Jan Moritz Zhu, Jiefu Foersch, Sebastian Veldhuizen, Gregory Patrick Quirke, Philip Grabsch, Heike I. van den Brandt, Piet A. Hutchins, Gordon G.A. Richman, Susan D. Yuan, Tanwei Langer, Rupert Jenniskens, Josien C.A. Offermans, Kelly Mueller, Wolfram Gray, Richard Gruber, Stephen B. Greenson, Joel K. Rennert, Gad Bonner, Joseph D. Schmolze, Daniel Jonnagaddala, Jitendra Hawkins, Nicholas J. Ward, Robyn L. Morton, Dion Seymour, Matthew Magill, Laura Nowak, Marta Hay, Jennifer Koelzer, Viktor H. Church, David N. Matek, Christian Geppert, Carol Peng, Chaolong Zhi, Cheng Ouyang, Xiaoming James, Jacqueline A. Loughrey, Maurice B. Salto-Tellez, Manuel Brenner, Hermann Hoffmeister, Michael Truhn, Daniel Schnabel, Julia A. Boxberg, Melanie Peng, Tingying Kather, Jakob Nikolas Cancer Cell Article Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem. Cell Press 2023-09-11 /pmc/articles/PMC10507381/ /pubmed/37652006 http://dx.doi.org/10.1016/j.ccell.2023.08.002 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wagner, Sophia J. Reisenbüchler, Daniel West, Nicholas P. Niehues, Jan Moritz Zhu, Jiefu Foersch, Sebastian Veldhuizen, Gregory Patrick Quirke, Philip Grabsch, Heike I. van den Brandt, Piet A. Hutchins, Gordon G.A. Richman, Susan D. Yuan, Tanwei Langer, Rupert Jenniskens, Josien C.A. Offermans, Kelly Mueller, Wolfram Gray, Richard Gruber, Stephen B. Greenson, Joel K. Rennert, Gad Bonner, Joseph D. Schmolze, Daniel Jonnagaddala, Jitendra Hawkins, Nicholas J. Ward, Robyn L. Morton, Dion Seymour, Matthew Magill, Laura Nowak, Marta Hay, Jennifer Koelzer, Viktor H. Church, David N. Matek, Christian Geppert, Carol Peng, Chaolong Zhi, Cheng Ouyang, Xiaoming James, Jacqueline A. Loughrey, Maurice B. Salto-Tellez, Manuel Brenner, Hermann Hoffmeister, Michael Truhn, Daniel Schnabel, Julia A. Boxberg, Melanie Peng, Tingying Kather, Jakob Nikolas Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study |
title | Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study |
title_full | Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study |
title_fullStr | Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study |
title_full_unstemmed | Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study |
title_short | Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study |
title_sort | transformer-based biomarker prediction from colorectal cancer histology: a large-scale multicentric study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507381/ https://www.ncbi.nlm.nih.gov/pubmed/37652006 http://dx.doi.org/10.1016/j.ccell.2023.08.002 |
work_keys_str_mv | AT wagnersophiaj transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT reisenbuchlerdaniel transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT westnicholasp transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT niehuesjanmoritz transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT zhujiefu transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT foerschsebastian transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT veldhuizengregorypatrick transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT quirkephilip transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT grabschheikei transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT vandenbrandtpieta transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT hutchinsgordonga transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT richmansusand transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT yuantanwei transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT langerrupert transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT jenniskensjosienca transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT offermanskelly transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT muellerwolfram transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT grayrichard transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT gruberstephenb transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT greensonjoelk transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT rennertgad transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT bonnerjosephd transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT schmolzedaniel transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT jonnagaddalajitendra transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT hawkinsnicholasj transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT wardrobynl transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT mortondion transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT seymourmatthew transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT magilllaura transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT nowakmarta transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT hayjennifer transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT koelzerviktorh transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT churchdavidn transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT matekchristian transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT geppertcarol transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT pengchaolong transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT zhicheng transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT ouyangxiaoming transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT jamesjacquelinea transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT loughreymauriceb transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT saltotellezmanuel transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT brennerhermann transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT hoffmeistermichael transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT truhndaniel transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT schnabeljuliaa transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT boxbergmelanie transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT pengtingying transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy AT katherjakobnikolas transformerbasedbiomarkerpredictionfromcolorectalcancerhistologyalargescalemulticentricstudy |