Cargando…
Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507399/ https://www.ncbi.nlm.nih.gov/pubmed/37731497 http://dx.doi.org/10.3389/fimmu.2023.1167241 |
_version_ | 1785107308882165760 |
---|---|
author | Patel, Ravi K. Jaszczak, Rebecca G. Im, Kwok Carey, Nicholas D. Courau, Tristan Bunis, Daniel G. Samad, Bushra Avanesyan, Lia Chew, Nayvin W. Stenske, Sarah Jespersen, Jillian M. Publicover, Jean Edwards, Austin W. Naser, Mohammad Rao, Arjun A. Lupin-Jimenez, Leonard Krummel, Matthew F. Cooper, Stewart Baron, Jody L. Combes, Alexis J. Fragiadakis, Gabriela K. |
author_facet | Patel, Ravi K. Jaszczak, Rebecca G. Im, Kwok Carey, Nicholas D. Courau, Tristan Bunis, Daniel G. Samad, Bushra Avanesyan, Lia Chew, Nayvin W. Stenske, Sarah Jespersen, Jillian M. Publicover, Jean Edwards, Austin W. Naser, Mohammad Rao, Arjun A. Lupin-Jimenez, Leonard Krummel, Matthew F. Cooper, Stewart Baron, Jody L. Combes, Alexis J. Fragiadakis, Gabriela K. |
author_sort | Patel, Ravi K. |
collection | PubMed |
description | In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery. |
format | Online Article Text |
id | pubmed-10507399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105073992023-09-20 Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data Patel, Ravi K. Jaszczak, Rebecca G. Im, Kwok Carey, Nicholas D. Courau, Tristan Bunis, Daniel G. Samad, Bushra Avanesyan, Lia Chew, Nayvin W. Stenske, Sarah Jespersen, Jillian M. Publicover, Jean Edwards, Austin W. Naser, Mohammad Rao, Arjun A. Lupin-Jimenez, Leonard Krummel, Matthew F. Cooper, Stewart Baron, Jody L. Combes, Alexis J. Fragiadakis, Gabriela K. Front Immunol Immunology In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery. Frontiers Media S.A. 2023-09-04 /pmc/articles/PMC10507399/ /pubmed/37731497 http://dx.doi.org/10.3389/fimmu.2023.1167241 Text en Copyright © 2023 Patel, Jaszczak, Im, Carey, Courau, Bunis, Samad, Avanesyan, Chew, Stenske, Jespersen, Publicover, Edwards, Naser, Rao, Lupin-Jimenez, Krummel, Cooper, Baron, Combes and Fragiadakis https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Patel, Ravi K. Jaszczak, Rebecca G. Im, Kwok Carey, Nicholas D. Courau, Tristan Bunis, Daniel G. Samad, Bushra Avanesyan, Lia Chew, Nayvin W. Stenske, Sarah Jespersen, Jillian M. Publicover, Jean Edwards, Austin W. Naser, Mohammad Rao, Arjun A. Lupin-Jimenez, Leonard Krummel, Matthew F. Cooper, Stewart Baron, Jody L. Combes, Alexis J. Fragiadakis, Gabriela K. Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
title | Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
title_full | Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
title_fullStr | Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
title_full_unstemmed | Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
title_short | Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
title_sort | cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507399/ https://www.ncbi.nlm.nih.gov/pubmed/37731497 http://dx.doi.org/10.3389/fimmu.2023.1167241 |
work_keys_str_mv | AT patelravik cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT jaszczakrebeccag cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT imkwok cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT careynicholasd cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT courautristan cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT bunisdanielg cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT samadbushra cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT avanesyanlia cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT chewnayvinw cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT stenskesarah cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT jespersenjillianm cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT publicoverjean cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT edwardsaustinw cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT nasermohammad cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT raoarjuna cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT lupinjimenezleonard cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT krummelmatthewf cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT cooperstewart cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT baronjodyl cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT combesalexisj cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata AT fragiadakisgabrielak cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata |