Cargando…

Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data

In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Ravi K., Jaszczak, Rebecca G., Im, Kwok, Carey, Nicholas D., Courau, Tristan, Bunis, Daniel G., Samad, Bushra, Avanesyan, Lia, Chew, Nayvin W., Stenske, Sarah, Jespersen, Jillian M., Publicover, Jean, Edwards, Austin W., Naser, Mohammad, Rao, Arjun A., Lupin-Jimenez, Leonard, Krummel, Matthew F., Cooper, Stewart, Baron, Jody L., Combes, Alexis J., Fragiadakis, Gabriela K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507399/
https://www.ncbi.nlm.nih.gov/pubmed/37731497
http://dx.doi.org/10.3389/fimmu.2023.1167241
_version_ 1785107308882165760
author Patel, Ravi K.
Jaszczak, Rebecca G.
Im, Kwok
Carey, Nicholas D.
Courau, Tristan
Bunis, Daniel G.
Samad, Bushra
Avanesyan, Lia
Chew, Nayvin W.
Stenske, Sarah
Jespersen, Jillian M.
Publicover, Jean
Edwards, Austin W.
Naser, Mohammad
Rao, Arjun A.
Lupin-Jimenez, Leonard
Krummel, Matthew F.
Cooper, Stewart
Baron, Jody L.
Combes, Alexis J.
Fragiadakis, Gabriela K.
author_facet Patel, Ravi K.
Jaszczak, Rebecca G.
Im, Kwok
Carey, Nicholas D.
Courau, Tristan
Bunis, Daniel G.
Samad, Bushra
Avanesyan, Lia
Chew, Nayvin W.
Stenske, Sarah
Jespersen, Jillian M.
Publicover, Jean
Edwards, Austin W.
Naser, Mohammad
Rao, Arjun A.
Lupin-Jimenez, Leonard
Krummel, Matthew F.
Cooper, Stewart
Baron, Jody L.
Combes, Alexis J.
Fragiadakis, Gabriela K.
author_sort Patel, Ravi K.
collection PubMed
description In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery.
format Online
Article
Text
id pubmed-10507399
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-105073992023-09-20 Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data Patel, Ravi K. Jaszczak, Rebecca G. Im, Kwok Carey, Nicholas D. Courau, Tristan Bunis, Daniel G. Samad, Bushra Avanesyan, Lia Chew, Nayvin W. Stenske, Sarah Jespersen, Jillian M. Publicover, Jean Edwards, Austin W. Naser, Mohammad Rao, Arjun A. Lupin-Jimenez, Leonard Krummel, Matthew F. Cooper, Stewart Baron, Jody L. Combes, Alexis J. Fragiadakis, Gabriela K. Front Immunol Immunology In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery. Frontiers Media S.A. 2023-09-04 /pmc/articles/PMC10507399/ /pubmed/37731497 http://dx.doi.org/10.3389/fimmu.2023.1167241 Text en Copyright © 2023 Patel, Jaszczak, Im, Carey, Courau, Bunis, Samad, Avanesyan, Chew, Stenske, Jespersen, Publicover, Edwards, Naser, Rao, Lupin-Jimenez, Krummel, Cooper, Baron, Combes and Fragiadakis https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Patel, Ravi K.
Jaszczak, Rebecca G.
Im, Kwok
Carey, Nicholas D.
Courau, Tristan
Bunis, Daniel G.
Samad, Bushra
Avanesyan, Lia
Chew, Nayvin W.
Stenske, Sarah
Jespersen, Jillian M.
Publicover, Jean
Edwards, Austin W.
Naser, Mohammad
Rao, Arjun A.
Lupin-Jimenez, Leonard
Krummel, Matthew F.
Cooper, Stewart
Baron, Jody L.
Combes, Alexis J.
Fragiadakis, Gabriela K.
Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
title Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
title_full Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
title_fullStr Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
title_full_unstemmed Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
title_short Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
title_sort cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507399/
https://www.ncbi.nlm.nih.gov/pubmed/37731497
http://dx.doi.org/10.3389/fimmu.2023.1167241
work_keys_str_mv AT patelravik cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT jaszczakrebeccag cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT imkwok cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT careynicholasd cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT courautristan cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT bunisdanielg cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT samadbushra cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT avanesyanlia cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT chewnayvinw cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT stenskesarah cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT jespersenjillianm cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT publicoverjean cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT edwardsaustinw cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT nasermohammad cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT raoarjuna cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT lupinjimenezleonard cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT krummelmatthewf cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT cooperstewart cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT baronjodyl cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT combesalexisj cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata
AT fragiadakisgabrielak cycloneanaccessiblepipelinetoanalyzeevaluateandoptimizemultiparametriccytometrydata