Cargando…

Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits

A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional an...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanchez-Aguilera, Alberto, Masmudi-Martín, Mariam, Navas-Olive, Andrea, Baena, Patricia, Hernández-Oliver, Carolina, Priego, Neibla, Cordón-Barris, Lluís, Alvaro-Espinosa, Laura, García, Santiago, Martínez, Sonia, Lafarga, Miguel, Lin, Michael Z, Al-Shahrour, Fátima, Menendez de la Prida, Liset, Valiente, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507426/
https://www.ncbi.nlm.nih.gov/pubmed/37652007
http://dx.doi.org/10.1016/j.ccell.2023.07.010
_version_ 1785107315253313536
author Sanchez-Aguilera, Alberto
Masmudi-Martín, Mariam
Navas-Olive, Andrea
Baena, Patricia
Hernández-Oliver, Carolina
Priego, Neibla
Cordón-Barris, Lluís
Alvaro-Espinosa, Laura
García, Santiago
Martínez, Sonia
Lafarga, Miguel
Lin, Michael Z
Al-Shahrour, Fátima
Menendez de la Prida, Liset
Valiente, Manuel
author_facet Sanchez-Aguilera, Alberto
Masmudi-Martín, Mariam
Navas-Olive, Andrea
Baena, Patricia
Hernández-Oliver, Carolina
Priego, Neibla
Cordón-Barris, Lluís
Alvaro-Espinosa, Laura
García, Santiago
Martínez, Sonia
Lafarga, Miguel
Lin, Michael Z
Al-Shahrour, Fátima
Menendez de la Prida, Liset
Valiente, Manuel
author_sort Sanchez-Aguilera, Alberto
collection PubMed
description A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.
format Online
Article
Text
id pubmed-10507426
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-105074262023-09-20 Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits Sanchez-Aguilera, Alberto Masmudi-Martín, Mariam Navas-Olive, Andrea Baena, Patricia Hernández-Oliver, Carolina Priego, Neibla Cordón-Barris, Lluís Alvaro-Espinosa, Laura García, Santiago Martínez, Sonia Lafarga, Miguel Lin, Michael Z Al-Shahrour, Fátima Menendez de la Prida, Liset Valiente, Manuel Cancer Cell Article A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis. Cell Press 2023-09-11 /pmc/articles/PMC10507426/ /pubmed/37652007 http://dx.doi.org/10.1016/j.ccell.2023.07.010 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Sanchez-Aguilera, Alberto
Masmudi-Martín, Mariam
Navas-Olive, Andrea
Baena, Patricia
Hernández-Oliver, Carolina
Priego, Neibla
Cordón-Barris, Lluís
Alvaro-Espinosa, Laura
García, Santiago
Martínez, Sonia
Lafarga, Miguel
Lin, Michael Z
Al-Shahrour, Fátima
Menendez de la Prida, Liset
Valiente, Manuel
Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
title Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
title_full Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
title_fullStr Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
title_full_unstemmed Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
title_short Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
title_sort machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507426/
https://www.ncbi.nlm.nih.gov/pubmed/37652007
http://dx.doi.org/10.1016/j.ccell.2023.07.010
work_keys_str_mv AT sanchezaguileraalberto machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT masmudimartinmariam machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT navasoliveandrea machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT baenapatricia machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT hernandezolivercarolina machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT priegoneibla machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT cordonbarrislluis machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT alvaroespinosalaura machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT garciasantiago machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT martinezsonia machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT lafargamiguel machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT linmichaelz machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT alshahrourfatima machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT menendezdelapridaliset machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits
AT valientemanuel machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits