Cargando…
Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional an...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507426/ https://www.ncbi.nlm.nih.gov/pubmed/37652007 http://dx.doi.org/10.1016/j.ccell.2023.07.010 |
_version_ | 1785107315253313536 |
---|---|
author | Sanchez-Aguilera, Alberto Masmudi-Martín, Mariam Navas-Olive, Andrea Baena, Patricia Hernández-Oliver, Carolina Priego, Neibla Cordón-Barris, Lluís Alvaro-Espinosa, Laura García, Santiago Martínez, Sonia Lafarga, Miguel Lin, Michael Z Al-Shahrour, Fátima Menendez de la Prida, Liset Valiente, Manuel |
author_facet | Sanchez-Aguilera, Alberto Masmudi-Martín, Mariam Navas-Olive, Andrea Baena, Patricia Hernández-Oliver, Carolina Priego, Neibla Cordón-Barris, Lluís Alvaro-Espinosa, Laura García, Santiago Martínez, Sonia Lafarga, Miguel Lin, Michael Z Al-Shahrour, Fátima Menendez de la Prida, Liset Valiente, Manuel |
author_sort | Sanchez-Aguilera, Alberto |
collection | PubMed |
description | A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis. |
format | Online Article Text |
id | pubmed-10507426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-105074262023-09-20 Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits Sanchez-Aguilera, Alberto Masmudi-Martín, Mariam Navas-Olive, Andrea Baena, Patricia Hernández-Oliver, Carolina Priego, Neibla Cordón-Barris, Lluís Alvaro-Espinosa, Laura García, Santiago Martínez, Sonia Lafarga, Miguel Lin, Michael Z Al-Shahrour, Fátima Menendez de la Prida, Liset Valiente, Manuel Cancer Cell Article A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis. Cell Press 2023-09-11 /pmc/articles/PMC10507426/ /pubmed/37652007 http://dx.doi.org/10.1016/j.ccell.2023.07.010 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Sanchez-Aguilera, Alberto Masmudi-Martín, Mariam Navas-Olive, Andrea Baena, Patricia Hernández-Oliver, Carolina Priego, Neibla Cordón-Barris, Lluís Alvaro-Espinosa, Laura García, Santiago Martínez, Sonia Lafarga, Miguel Lin, Michael Z Al-Shahrour, Fátima Menendez de la Prida, Liset Valiente, Manuel Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
title | Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
title_full | Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
title_fullStr | Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
title_full_unstemmed | Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
title_short | Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
title_sort | machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507426/ https://www.ncbi.nlm.nih.gov/pubmed/37652007 http://dx.doi.org/10.1016/j.ccell.2023.07.010 |
work_keys_str_mv | AT sanchezaguileraalberto machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT masmudimartinmariam machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT navasoliveandrea machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT baenapatricia machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT hernandezolivercarolina machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT priegoneibla machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT cordonbarrislluis machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT alvaroespinosalaura machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT garciasantiago machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT martinezsonia machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT lafargamiguel machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT linmichaelz machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT alshahrourfatima machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT menendezdelapridaliset machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits AT valientemanuel machinelearningidentifiesexperimentalbrainmetastasissubtypesbasedontheirinfluenceonneuralcircuits |