Cargando…
Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny
The Crested-tailed deer mouse, Habromyslophurus, is one of seven arboreal species within the genus Habromys. Species of this genus are monotypic, relatively rare, and occur in low densities. Their geographical distribution is highly fragmented due to being restricted to montane cloud forest in Mesoa...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pensoft Publishers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507443/ https://www.ncbi.nlm.nih.gov/pubmed/37731536 http://dx.doi.org/10.3897/zookeys.1179.108759 |
_version_ | 1785107319277748224 |
---|---|
author | Castañeda-Rico, Susette Parker, Lillian D. Sánchez, Evelyn Rivas-Trasvina, Sheccid Hawkins, Melissa T. R. Edwards, Cody W. Maldonado, Jesús E. |
author_facet | Castañeda-Rico, Susette Parker, Lillian D. Sánchez, Evelyn Rivas-Trasvina, Sheccid Hawkins, Melissa T. R. Edwards, Cody W. Maldonado, Jesús E. |
author_sort | Castañeda-Rico, Susette |
collection | PubMed |
description | The Crested-tailed deer mouse, Habromyslophurus, is one of seven arboreal species within the genus Habromys. Species of this genus are monotypic, relatively rare, and occur in low densities. Their geographical distribution is highly fragmented due to being restricted to montane cloud forest in Mesoamerica and they are of conservation concern. All Habromys species are endemic to Mexico, except H.lophurus, which is also distributed in Guatemala and El Salvador. In this study, we obtained and characterized the first mitogenome and several thousand nuclear ultraconserved elements (UCEs) of H.lophurus to determine its phylogenetic position within neotomine–peromyscine mice. Its mitogenome sequence (16,509 bp) is only the second complete mitogenome obtained for this poorly known genus. We also obtained the first nuclear genomic data for H.lophurus, including 3,654 UCE loci, as well as a partial mitogenome of H.simulatus (6,349 bp), and 2,186 UCE for the outgroup Holochilussciureus. Phylogenetic analyses that included our newly generated genomic data coupled with previously published data from other neotomine–peromyscine mice confirm the placement of H.lophurus, H.simulatus, and H.ixtlani within a highly supported clade. The Habromys clade was nested within a clade that also contains members of the genus Peromyscus and provides further support for the hypothesis of the paraphyly of Peromyscus. These genomic resources will contribute to future phylogenomic studies that aim to further elucidate the evolutionary history of this rare and critically endangered genus of rodents. |
format | Online Article Text |
id | pubmed-10507443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Pensoft Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-105074432023-09-20 Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny Castañeda-Rico, Susette Parker, Lillian D. Sánchez, Evelyn Rivas-Trasvina, Sheccid Hawkins, Melissa T. R. Edwards, Cody W. Maldonado, Jesús E. Zookeys Short Communication The Crested-tailed deer mouse, Habromyslophurus, is one of seven arboreal species within the genus Habromys. Species of this genus are monotypic, relatively rare, and occur in low densities. Their geographical distribution is highly fragmented due to being restricted to montane cloud forest in Mesoamerica and they are of conservation concern. All Habromys species are endemic to Mexico, except H.lophurus, which is also distributed in Guatemala and El Salvador. In this study, we obtained and characterized the first mitogenome and several thousand nuclear ultraconserved elements (UCEs) of H.lophurus to determine its phylogenetic position within neotomine–peromyscine mice. Its mitogenome sequence (16,509 bp) is only the second complete mitogenome obtained for this poorly known genus. We also obtained the first nuclear genomic data for H.lophurus, including 3,654 UCE loci, as well as a partial mitogenome of H.simulatus (6,349 bp), and 2,186 UCE for the outgroup Holochilussciureus. Phylogenetic analyses that included our newly generated genomic data coupled with previously published data from other neotomine–peromyscine mice confirm the placement of H.lophurus, H.simulatus, and H.ixtlani within a highly supported clade. The Habromys clade was nested within a clade that also contains members of the genus Peromyscus and provides further support for the hypothesis of the paraphyly of Peromyscus. These genomic resources will contribute to future phylogenomic studies that aim to further elucidate the evolutionary history of this rare and critically endangered genus of rodents. Pensoft Publishers 2023-09-11 /pmc/articles/PMC10507443/ /pubmed/37731536 http://dx.doi.org/10.3897/zookeys.1179.108759 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article distributed under the terms of the CC0 Public Domain Dedication. |
spellingShingle | Short Communication Castañeda-Rico, Susette Parker, Lillian D. Sánchez, Evelyn Rivas-Trasvina, Sheccid Hawkins, Melissa T. R. Edwards, Cody W. Maldonado, Jesús E. Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny |
title | Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny |
title_full | Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny |
title_fullStr | Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny |
title_full_unstemmed | Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny |
title_short | Novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus Habromys Hooper & Musser, 1964 (Cricetidae, Neotominae) within a neotomine–peromyscine phylogeny |
title_sort | novel genomic resources contribute to the systematics of threatened arboreal deer mice of the genus habromys hooper & musser, 1964 (cricetidae, neotominae) within a neotomine–peromyscine phylogeny |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507443/ https://www.ncbi.nlm.nih.gov/pubmed/37731536 http://dx.doi.org/10.3897/zookeys.1179.108759 |
work_keys_str_mv | AT castanedaricosusette novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny AT parkerlilliand novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny AT sanchezevelyn novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny AT rivastrasvinasheccid novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny AT hawkinsmelissatr novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny AT edwardscodyw novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny AT maldonadojesuse novelgenomicresourcescontributetothesystematicsofthreatenedarborealdeermiceofthegenushabromyshoopermusser1964cricetidaeneotominaewithinaneotomineperomyscinephylogeny |