Cargando…
A novel method for the quantitative assessment of the fitted containment efficiency of face coverings
BACKGROUND: Face masks reduce disease transmission by protecting the wearer from inhaled pathogens and reducing the emission of infectious aerosols. Although methods quantifying efficiency for wearer protection are established, current methods for assessing face mask containment efficiency rely on m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507493/ https://www.ncbi.nlm.nih.gov/pubmed/36912322 http://dx.doi.org/10.1017/ice.2022.316 |
Sumario: | BACKGROUND: Face masks reduce disease transmission by protecting the wearer from inhaled pathogens and reducing the emission of infectious aerosols. Although methods quantifying efficiency for wearer protection are established, current methods for assessing face mask containment efficiency rely on measurement of a low concentration of aerosols emitted from an infected or noninfected individual. METHODS: A small port enabled the introduction of 0.05 µm sodium chloride particles at a constant rate behind the mask worn by a study participant. A condensation particle counter monitored ambient particle numbers 60 cm in front of the participant over 3-minute periods of rest, speaking, and coughing. The containment efficiency (%) for each mask and procedure was calculated as follows: 100 × (1 − average ambient concentration with face covering worn/average ambient concentration with a sham face covering in place). The protection efficiency (%) was also measured using previously published methods. The probability of transmission (%) from infected to uninfected (a function of both the containment efficiency and the protection efficiency) was calculated as follows: {1 − (containment efficiency/100)}×{1 − (protection efficiency/100)}×100. RESULTS: The average containment efficiencies for each mask over all procedures and repeated measures were 94.6%, 60.9%, 38.8%, and 43.2%, respectively, for the N95 mask, the KN95 mask, the procedure face mask, and the gaiter. The corresponding protection efficiencies for each mask were 99.0%, 63.7%, 45.3%, and 24.2%, respectively. For example, the transmission probability for 1 infected and 1 uninfected individual in close proximity was ∼14.2% for KN95 masks, compared to 36%–39% when only 1 individual wore a KN95 mask. CONCLUSION: Overall, we detected a good correlation between the protection and containment that a face covering afforded to a wearer. |
---|