Cargando…
A new automated national register-based surveillance system for outbreaks in long-term care facilities in Norway detected three times more severe acute respiratory coronavirus virus 2 (SARS-CoV-2) clusters than traditional methods
OBJECTIVE: To develop and test a new automated surveillance system that can detect, define and characterize infection clusters, including coronavirus disease 2019 (COVID-19), in long-term care facilities (LTCFs) in Norway by combining existing national register data. BACKGROUND: The numerous outbrea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507514/ https://www.ncbi.nlm.nih.gov/pubmed/36524319 http://dx.doi.org/10.1017/ice.2022.297 |
Sumario: | OBJECTIVE: To develop and test a new automated surveillance system that can detect, define and characterize infection clusters, including coronavirus disease 2019 (COVID-19), in long-term care facilities (LTCFs) in Norway by combining existing national register data. BACKGROUND: The numerous outbreaks in LTCFs during the COVID-19 pandemic highlighted the need for accurate and timely outbreak surveillance. As traditional methods were inadequate, we used severe acute respiratory coronavirus virus 2 (SARS-CoV-2) as a model to test automated surveillance. METHODS: We conducted a nationwide study using data from the Norwegian preparedness register (Beredt C19) and defined the study population as an open cohort from January 2020 to December 2021. We analyzed clusters (≥3 individuals with positive SARS-CoV-2 test ≤14 days) by 4-month periods including cluster size, duration and composition, and residents’ mortality associated with clusters. RESULTS: The study population included 173,907 individuals; 78% employees and 22% residents. Clusters were detected in 427 (43%) of 993 LTCFs. The median cluster size was 4–8 individuals (maximum, 50) by 4-month periods, with a median duration of 9–17 days. Employees represented 60%–82% of cases in clusters and were index cases in 60%–90%. In the last 4-month period of 2020, we detected 107 clusters (915 cases) versus 428 clusters (2,998 cases) in the last period of 2021. The 14-day all-cause mortality rate was higher in resident cases from the clusters. Varying the cluster definitions changed the number of clusters. CONCLUSION: Automated national surveillance for SARS-CoV-2 clusters in LTCFs is possible based on existing data sources and provides near real-time detailed information on size, duration, and composition of clusters. Thus, this system can assist in early outbreak detection and improve surveillance. |
---|