Cargando…
Enhancing LGMD-based model for collision prediction via binocular structure
INTRODUCTION: Lobular giant motion detector (LGMD) neurons, renowned for their distinctive response to looming stimuli, inspire the development of visual neural network models for collision prediction. However, the existing LGMD-based models could not yet incorporate the invaluable feature of depth...
Autores principales: | Zheng, Yi, Wang, Yusi, Wu, Guangrong, Li, Haiyang, Peng, Jigen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507862/ https://www.ncbi.nlm.nih.gov/pubmed/37732308 http://dx.doi.org/10.3389/fnins.2023.1247227 |
Ejemplares similares
-
A directionally selective collision-sensing visual neural network based on fractional-order differential operator
por: Wang, Yusi, et al.
Publicado: (2023) -
LGMD. Identification, description and classification
por: Angelini, Corrado
Publicado: (2020) -
Unmixing Binocular Signals
por: Lehky, Sidney R.
Publicado: (2011) -
An Alternative Theory of Binocularity
por: Ng, Cherlyn J., et al.
Publicado: (2019) -
The Binocular Balance at High Spatial Frequencies as Revealed by the Binocular Orientation Combination Task
por: Wang, Yonghua, et al.
Publicado: (2019)