Cargando…
Extended study on atomic featurization in graph neural networks for molecular property prediction
Graph neural networks have recently become a standard method for analyzing chemical compounds. In the field of molecular property prediction, the emphasis is now on designing new model architectures, and the importance of atom featurization is oftentimes belittled. When contrasting two graph neural...
Autores principales: | Wojtuch, Agnieszka, Danel, Tomasz, Podlewska, Sabina, Maziarka, Łukasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507875/ https://www.ncbi.nlm.nih.gov/pubmed/37726841 http://dx.doi.org/10.1186/s13321-023-00751-7 |
Ejemplares similares
-
Generation of new inhibitors of selected cytochrome P450 subtypes– In silico study
por: Danel, Tomasz, et al.
Publicado: (2022) -
How can SHAP values help to shape metabolic stability of chemical compounds?
por: Wojtuch, Agnieszka, et al.
Publicado: (2021) -
Mol-CycleGAN: a generative model for molecular optimization
por: Maziarka, Łukasz, et al.
Publicado: (2020) -
Generative Models
Should at Least Be Able to Design
Molecules That Dock Well: A New Benchmark
por: Ciepliński, Tobiasz, et al.
Publicado: (2023) -
Quantitative evaluation of explainable graph neural networks for molecular property prediction
por: Rao, Jiahua, et al.
Publicado: (2022)