Cargando…
Circ_072697 knockdown promotes advanced glycation end products-induced cell proliferation and migration in HaCaT cells via miR-3150a-3p/KDM2A axis
OBJECTIVE: Diabetes foot ulcer (DFU) is a serious complication of diabetes, which can lead to significant mortality and amputation rate. Our previous study found circ_072697 was highly expressed in DFU tissues, but the regulatory mechanism of circ_072697 in DFU remains unclear. METHODS: The relative...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507952/ https://www.ncbi.nlm.nih.gov/pubmed/37726685 http://dx.doi.org/10.1186/s12902-023-01430-2 |
Sumario: | OBJECTIVE: Diabetes foot ulcer (DFU) is a serious complication of diabetes, which can lead to significant mortality and amputation rate. Our previous study found circ_072697 was highly expressed in DFU tissues, but the regulatory mechanism of circ_072697 in DFU remains unclear. METHODS: The relative expressions of circ_072697, miR-3150a-3p, and KDM2A in DFU patients or advanced glycation end products (AGEs)-treated HaCaT cells (used as DFU cell model) were determined by using qRT-PCR. Cell proliferation and migration abilities were determined by using CCK-8 and Transwell assays. The interaction between miR-3150a-3p with circ_072697 or KDM2A were verified by RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. Furthermore, the protein expression of genes involved in MAPK signaling pathway was detected by western blot. RESULTS: The expression of circ_072697 was significantly upregulated in DFU tissues, while the expression of miR-3150a-3p was downregulated. Circ_072697 knockdown promoted the proliferation and migration of AGEs-treated HaCaT cells. miR-3150a-3p was confirmed as a target of circ_072697 and its inhibitor reversed the promotion effects of circ_072697 knockdown on biological behavior of cells. In addition, KDM2A was considered as a target of miR-3150a-3p and it was highly expressed in DFU samples. Importantly, circ_072697 could regulate KDM2A expression through sponging miR-3150a-3p, and this axis had effect on the MAPK signaling pathway. CONCLUSIONS: Overall, circ_072697 regulated the biological behaviors of keratinocytes in DFU via miR-3150a-3p/KDM2A axis and MAPK signaling pathway, revealing a new insight into the pathogenesis and potential therapeutic targets of DFU. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12902-023-01430-2. |
---|